BT
Berke Türkaydin
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Atomistic mechanism of coupling between cytosolic sensor domain and selectivity filter in TREK K2P channels

Berke Türkaydin et al.May 31, 2024
+4
E
M
B
Abstract The two-pore domain potassium (K 2P ) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics (MD) simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes, while the up-state structure maintains a stable and conductive SF. This suggests an atomistic mechanism for the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, experimentally by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. Based on MD simulations, we propose two gating pathways by which movement of the pCt controls the stability (i.e., conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.
0
Citation1
0
Save
1

From head to tail - Atomistic mechanism of long-range coupling from the cytosolic sensor domain to the selectivity filter in TREK K2P channels

Berke Türkaydin et al.Oct 8, 2023
+4
E
M
B
The two-pore domain potassium (K2P) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes at the S1 ion coordination site, while the up-state structure maintains a stable and conductive SF. This provides an atomistic understanding of the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. We also uncover two gating pathways by which movement of the pCt controls the stability (i.e. conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.