YB
Yang Bi
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
10
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deconvoluting signals downstream of growth and immune receptor kinases by phosphocodes of the BSU1 family phosphatases

Chan Park et al.Jun 27, 2019
+13
S
J
C
Abstract Hundreds of leucine-rich repeat receptor kinases (LRR-RKs) have evolved to control diverse processes of growth, development, and immunity in plants; the mechanisms that link LRR-RKs to distinct cellular responses are not understood. Here we show that two LRR-RKs, the brassinosteroid hormone receptor BRI1 (BRASSINOSTEROID INSENSITIVE 1) and the flagellin receptor FLS2 (FLAGELLIN SENSING 2), regulate downstream glycogen synthase kinase 3 (GSK3) and mitogen-activated protein (MAP) kinases, respectively, through phosphocoding of the BRI1-SUPPRESSOR1 (BSU1) phosphatase. BSU1 was previously identified as a component that inactivates GSK3s in the BRI1 pathway. We found surprisingly that loss of the BSU1 family phosphatases activates effector-triggered immunity (ETI) and impairs flagellin-triggered MAP kinase activation and immunity. The flagellin-activated BOTRYTIS-INDUCED KINASE 1 (BIK1) phosphorylates BSU1 at serine-251. Mutation of serine-251 reduces the ability of BSU1 to mediate flagellin-induced MAP kinase activation and immunity, but not its abilities to suppress ETI and interact with GSK3, which is enhanced through the phosphorylation of BSU1 at serine-764 upon brassinosteroid signaling. These results demonstrate that BSU1 plays an essential role in immunity and transduces brassinosteroid-BRI1 and flagellin-FLS2 signals using different phosphorylation sites. Our study illustrates that phosphocoding in shared downstream components provides signaling specificities for diverse plant receptor kinases.
0
Citation5
0
Save
0

Nuclear pyruvate dehydrogenase complex regulates histone acetylation and transcriptional regulation in the ethylene response

Zhengyao Shao et al.Jul 26, 2024
+10
S
L
Z
Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C–directed regulation of histone acetylation is the first key step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesizes nuclear acetyl CoA for EIN2-C–directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme-mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.
0
Citation3
0
Save
0

Nuclear Pyruvate Dehydrogenase Complex Regulates Histone Acetylation and Transcriptional Regulation in the Ethylene Response

Zhengyao Shao et al.Oct 27, 2023
+13
S
L
Z
Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprograming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. But how the nuclear acetyl coenzyme A (acetyl CoA) is produced to ensure the ethylene-mediated histone acetylation is unknown. Here we report that ethylene triggers the accumulation of the pyruvate dehydrogenase complex (PDC) in the nucleus to synthesize nuclear acetyl CoA to regulate ethylene response. PDC is identified as an EIN2-C nuclear partner, and ethylene triggers its nuclear accumulation. Mutations in PDC lead to an ethylene-hyposensitivity that results from the reduction of histone acetylation and transcription activation. Enzymatically active nuclear PDC synthesize nuclear acetyl CoA for EIN2-C-directed histone acetylation and transcription regulation. These findings uncover a mechanism by which PDC-EIN2 converges the mitochondrial enzyme mediated nuclear acetyl CoA synthesis with epigenetic and transcriptional regulation for plant hormone response.
0
Citation2
0
Save
1

Structure-based virtual screening identifies small molecule inhibitors of O-fucosyltransferase SPINDLY

Yalikunjiang Aizezi et al.Jun 14, 2023
+9
Z
H
Y
Protein O-glycosylation is a nutrient-signaling mechanism that plays essential roles in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) catalyze posttranslational modifications of hundreds of intracellular proteins by O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation and loss of both SPY and SEC causes embryo lethality in Arabidopsis. Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a S PY O - f ucosyltransferase i nhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and caused phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defect in sugar-dependent growth. By contrast, SOFTI had no visible effect on the spy mutant. Similarly, SOFTI inhibited sugar-dependent growth of tomato seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor and a useful chemical tool for functional studies of O-fucosylation and potentially for agricultural management.
0

Revisiting the current and emerging concepts of postharvest fresh fruit and vegetable pathology for next‐generation antifungal technologies

Guillaume Ngea et al.Jun 25, 2024
+5
M
Q
G
Abstract Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.
0

Regulation of sucrose metabolism, sugar transport and pentose phosphate pathway by PacC in apple fruit colonized by Penicillium expansum

Yatong Zhu et al.Aug 13, 2024
+5
X
Y
Y
A critical transcription factor, PacC, modulates the expression of fungal pH signaling. Although PacC-mediated environmental pH has been reported to regulate the growth and pathogenicity of postharvest pathogens, the involvement of PacC in sucrose metabolism, sugar transport, and the pentose phosphate pathway (PPP) in different zones of decayed fruit remains unclear. Our work showed that the inoculation with a PePacC deletion strain of Penicillium expansum (ΔPePacC) accelerated sucrose catabolism and glucose and fructose accumulation in different zones of apple fruit. This was attributed to an increase in sucrose metabolism enzyme activities and up-regulation of the sugar transporter protein-related gene expression. Moreover, ΔPePacC inoculation increased the PPP-related enzyme activities and the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and NADP
2

Arabidopsis ACINUS is O-glycosylated and regulates transcription and alternative splicing of regulators of reproductive transitions

Yang Bi et al.Oct 1, 2020
+13
W
S
Y
Abstract O-GlcNAc modification plays important roles in metabolic regulation of cellular status. Two homologs of O-GlcNAc transferase, SECRET AGENT (SEC) and SPINDLY (SPY), which have O-GlcNAc and O-fucosyl transferase activities, respectively, are essential in Arabidopsis but have largely unknown cellular targets. Here we show that AtACINUS is O-GlcNAcylated and O-fucosylated and mediates regulation of transcription, alternative splicing (AS), and developmental transitions. Knocking-out both AtACINUS and its distant paralog AtPININ causes severe growth defects including dwarfism, delayed seed germination and flowering, and abscisic acid (ABA) hypersensitivity. Transcriptomic and protein-DNA/RNA interaction analyses demonstrate that AtACINUS represses transcription of the flowering repressor FLC and mediates AS of ABH1 and HAB1 , two negative regulators of ABA signaling. Proteomic analyses show AtACINUS’s O-GlcNAcylation, O-fucosylation, and association with splicing factors, chromatin remodelers, and transcriptional regulators. Some AtACINUS/AtPININ-dependent AS events are altered in the sec and spy mutants, demonstrating a function of O-glycosylation in regulating alternative RNA splicing.