JA
Jacob Andersen
Author with expertise in Molecular Mechanisms of Ion Channels Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
4
h-index:
22
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular definition of distinct active zone protein machineries for Ca2+channel clustering and synaptic vesicle priming

Javier Emperador-Melero et al.Oct 30, 2023
Summary Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with Ca V 2 Ca 2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to Ca V 2s. We find that Ca V 2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, Ca V 2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co- assemblies that are separate from Ca V 2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not Ca V 2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co- clustering of Ca V 2s. We conclude that active zones consist of distinct complexes to organize Ca V 2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.
0
Citation2
0
Save
1

High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology

Nina Braun et al.Nov 24, 2020
Abstract Incorporation of non-canonical amino acids (ncAAs) can endow proteins with novel functionalities, such as crosslinking or fluorescence. In ion channels, the function of these variants can be studied with great precision using standard electrophysiology, but this approach is typically labor intensive and low throughput. Here, we establish a high-throughput protocol to conduct functional and pharmacological investigations of ncAA-containing hASIC1a (human acid-sensing ion channel 1a) variants in transiently transfected mammalian cells. We introduce three different photocrosslinking ncAAs into 103 positions and assess the function of the resulting 309 variants with automated patch-clamp (APC). We demonstrate that the approach is efficient and versatile, as it is amenable to assessing even complex pharmacological modulation by peptides. The data show that the acidic pocket is a major determinant for current decay and live-cell crosslinking provides insight into the hASIC1a-psalmotoxin-1 interaction. Further, we provide evidence that the protocol can be applied to other ion channels, such as P2X2 and GluA2 receptors. We therefore anticipate the approach to enable future APC-based studies of ncAA-containing ion channels in mammalian cells.
1
Citation2
0
Save
0

Mechanism and site of action of big dynorphin on ASIC1a

Christian Borg et al.Oct 29, 2019
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is upregulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs and non-canonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is mediated through electrostatic interactions of basic amino acids in the BigDyn N-terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the non-canonical amino acid azido-phenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.Significance Statement Neuropeptides such as big dynorphin (BigDyn) play important roles in the slow modulation of fast neurotransmission, which is mediated by membrane-embedded receptors. In fact, BigDyn is the most potent known endogenous modulator of one such receptor, the acid-sensing ion channel (ASIC), but the mode of action remains unknown. In this work, we employ a broad array of technologies to unravel the details of where big dynorphin binds to ASIC and how it modulates its activity. As both BigDyn and ASIC are implicated in pain pathways, this work might pave the way towards future analgesics.