DR
Dakota Robarts
Author with expertise in Glycosylation in Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
4
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Regulation of hepatic xenosensor function by HNF4alpha

Manasi Kotulkar et al.May 29, 2024
Abstract Nuclear receptors such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator-activated receptor-alpha (PPARα), and transcription factors with nuclear receptor type activity such as aryl hydrocarbon receptor (AhR) function as xenobiotic sensors. Hepatocyte nuclear factor 4alpha (HNF4α) is a highly conserved orphan nuclear receptor essential for liver function. We tested the hypothesis that HNF4α is essential for the function of these 4 major xenosensors. Wild-type (WT) and hepatocyte-specific Hnf4a null (HNF4α-KO) mice were treated with the mouse-specific activators of AhR (TCDD, 30 µg/kg), CAR (TCPOBOP, 2.5 µg/g), PXR, (PCN, 100 µg/g), and PPARα (WY-14643, 1 mg/kg). Blood and liver tissue samples were collected to study receptor activation. TCDD (AhR agonist) treatment did not affect the liver-to-body weight ratio (LW/BW) in either WT or HNF4α-KO mice. Further, TCDD activated AhR in both WT and HNF4α-KO mice, confirmed by increase in expression of AhR target genes. TCPOBOP (CAR agonist) significantly increased the LW/BW ratio and CAR target gene expression in WT mice, but not in HNF4α-KO mice. PCN (a mouse PXR agonist) significantly increased LW/BW ratio in both WT and HNF4α-KO mice however, failed to induce PXR target genes in HNF4α-KO mice. The treatment of WY-14643 (PPARα agonist) increased LW/BW ratio and PPARα target gene expression in WT mice but not in HNF4α-KO mice. Together, these data indicate that the function of CAR, PXR, and PPARα but not of AhR was disrupted in HNF4α-KO mice. These results demonstrate that HNF4α function is critical for the activation of hepatic xenosensors, which are critical for toxicological responses.
0
Citation2
0
Save
3

Identifying Human Specific Adverse Outcome Pathways of Per- and Polyfluoroalkyl Substances Using Liver-Chimeric Humanized Mice

Dakota Robarts et al.Feb 3, 2023
Abstract Background Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with myriad adverse effects. While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are the most common contaminants, levels of replacement PFAS, such as perfluoro-2-methyl-3-oxahexanoic acid (GenX), are increasing. In rodents, PFOA, PFOS, and GenX have several adverse effects on the liver, including nonalcoholic fatty liver disease. Objective We aimed to determine human-relevant mechanisms of PFAS induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Methods Male humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. Liver and serum were collected for pathology and clinical chemistry, respectively. RNA-sequencing coupled with pathway analysis was used to determine molecular mechanisms. Results PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. PFOA had no significant changes in serum LDL/VLDL and total cholesterol. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed inhibition of NR1D1, a transcriptional repressor important in circadian rhythm, as the major common molecular change in all PFAS treatments. PFAS treated mice had significant nuclear localization of NR1D1. In silico modeling showed PFOA, PFOS, and GenX potentially interact with the DNA-binding domain of NR1D1. Discussion These data implicate PFAS in circadian rhythm disruption via inhibition of NR1D1. These studies show that FRG humanized mice are a useful tool for studying the adverse outcome pathways of environmental pollutants on human hepatocytes in situ.
3
Citation1
0
Save
6

Regulation of Liver Regeneration by hepatocyte O-GlcNAcylation in mice

Dakota Robarts et al.Oct 14, 2021
Abstract The liver has a unique capacity to regenerate after injury in a highly orchestrated and regulated manner. Here we report that O-GlcNAcylation, an intracellular post-translational modification (PTM) regulated by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a critical termination signal for liver regeneration (LR) following partial hepatectomy (PHX). We studied liver regeneration after PHX on hepatocyte specific OGT and OGA knockout mice (OGT-KO and OGA-KO), which caused a significant decrease (OGT-KO) and increase (OGA-KO) in hepatic O-GlcNAcylation, respectively. OGA-KO mice had normal regeneration, but the OGT-KO mice exhibited substantial defects in termination of liver regeneration with increased liver injury, sustained cell proliferation resulting in significant hepatomegaly, hepatic dysplasia and appearance of small nodules at 28 days after PHX. This was accompanied by a sustained increase in expression of cyclins along with significant induction in pro-inflammatory and pro-fibrotic gene expression in the OGT-KO livers. RNA-Seq studies revealed inactivation of hepatocyte nuclear 4 alpha (HNF4 α ), the master regulator of hepatic differentiation and a known termination signal, in OGT-KO mice at 28 days after PHX, which was confirmed by both Western blot and IHC analysis. Furthermore, a significant decrease in HNF α target genes was observed in OGT-KO mice, indicating a lack of hepatocyte differentiation following decreased hepatic O-GlcNAcylation. Immunoprecipitation experiments revealed HNF4α is O-GlcNAcylated in normal differentiated hepatocytes. These studies show that O-GlcNAcylation plays a critical role in the termination of LR via regulation of HNF4 α in hepatocytes. Layman summary O-GlcNAcylation is a protein modification that plays a critical role in various biological processes including cell proliferation, differentiation, and disease progression. These studies show that O-GlcNAcylation in hepatocytes is essential for proper liver regeneration. Without O-GlcNAcylation, hepatocytes keep on proliferating eventually forming liver tumors.
6
Citation1
0
Save
1

Regulation of Hepatic Xenosensor Function by HNF4alpha

Manasi Kotulkar et al.Oct 14, 2023
Abstract Nuclear receptors including Aryl hydrocarbon Receptor (AhR), Constitutive Androstane Receptor (CAR), Pregnane X Receptor (PXR), and Peroxisome Proliferator-Activated Receptor-alpha (PPARα) function as xenobiotic sensors. Hepatocyte nuclear factor 4alpha (HNF4α) is a highly conserved orphan nuclear receptor essential for liver function. We tested the hypothesis that HNF4α is essential for function of these four major xenosensors. Wild-type (WT) and hepatocyte-specific HNF4α knockout (HNF4α-KO) mice were treated with the mouse-specific activators of AhR (TCDD, 30 µg/kg), CAR (TCPOBOP, 2.5 µg/g), PXR, (PCN, 100 µg/g), and PPARα (WY-14643, 1 mg/kg). Blood and liver tissue samples were collected to study nuclear receptor activation. TCDD (AhR agonist) treatment did not affect the liver-to-body weight ratio (LW/BW) in either WT or HNF4α-KO mice. Further, TCDD activated AhR in both WT and HNF4-KO mice, confirmed by increase in expression of its target genes. TCPOBOP (CAR agonist) significantly increased the LW/BW ratio and CAR target gene expression in WT mice, but not in HNF4α-KO mice. PCN (a mouse PXR agonist) significantly increased LW/BW ratio in both WT and HNF4α-KO mice however, it failed to induce PXR target genes in HNF4 KO mice. The treatment of WY-14643 (PPARα agonist) increased LW/BW ratio and PPARα target gene expression in WT mice but not in HNF4α-KO mice. Together, these data indicate that the function of CAR, PXR, and PPARα but not of AhR was disrupted in HNF4α-KO mice. These results demonstrate that HNF4α function is critical for the activation of hepatic xenosensors, which are critical for toxicological responses.
0

Multi-Omics after O-GlcNAc Alteration Identifies Cellular Processes Working Synergistically to Promote Aneuploidy

Samuel Boyd et al.Apr 16, 2024
Abstract Pharmacologic or genetic manipulation of O-GlcNAcylation, an intracellular, single sugar post-translational modification, are difficult to interpret due to the pleotropic nature of O-GlcNAc and the vast signaling pathways it regulates. To address this issue, we employed either OGT (O-GlcNAc transferase), OGA (O-GlcNAcase) liver knockouts, or pharmacological inhibition of OGA coupled with multi-Omics analysis and bioinformatics. We identified numerous genes, proteins, phospho-proteins, or metabolites that were either inversely or equivalently changed between conditions. Moreover, we identified pathways in OGT knockout samples associated with increased aneuploidy. To test and validate these pathways, we induced liver growth in OGT knockouts by partial hepatectomy. OGT knockout livers showed a robust aneuploidy phenotype with disruptions in mitosis, nutrient sensing, protein metabolism/amino acid metabolism, stress response, and HIPPO signaling demonstrating how OGT is essential in controlling aneuploidy pathways. Moreover, these data show how a multi-Omics platform can discern how OGT can synergistically fine-tune multiple cellular pathways.
2

The Essential Role of O-GlcNAcylation in Hepatic Differentiation

Dakota Robarts et al.Feb 17, 2023
O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase (OGT), which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and hepatocellular carcinoma.Single-cell RNA-sequencing was used to investigate hepatocyte differentiation in hepatocyte-specific OGT-KO mice with increased hepatic O-GlcNAcylation and in OGA-KO mice with decreased O-GlcNAcylation in hepatocytes. HCC patient samples and the DEN-induced hepatocellular carcinoma (HCC) model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer.Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation characterized by dysregulation of glycogen storage and glucose production. OGT-KO mice exacerbated DEN-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, OGA-KO mice with increased hepatic O-GlcNAcylation inhibited DEN-induced HCC. A progressive loss of O-GlcNAcylation was observed in HCC patients.Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.