DN
Delphine Naquin
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
1,194
h-index:
17
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam et al.Jul 22, 2013
Background - The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results - In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. Conclusions - Many current genome assemblers produced useful assemblies, containing a significant representation of their genes, regulatory sequences, and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.
0
Citation670
0
Save
0

Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts

Joy Lachat et al.Jun 12, 2024
The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.
0
Citation2
0
Save
0

Contrasted gene decay in subterranean vertebrates: insights from cavefishes and fossorial mammals

Maxime Policarpo et al.Mar 6, 2020
Evolution sometimes proceeds by loss, especially when structures and genes become dispensable after an environmental shift relaxing functional constraints. Gene decay can serve as a read-out of this evolutionary process. Animals living in the dark are outstanding models, in particular cavefishes as hundreds of species evolved independently during very different periods of time in absence of light. Here, we sought to understand some general principals on the extent and tempo of decay of several gene sets in cavefishes. The analysis of the genomes of two Cuban species belonging to the genus Lucifuga provides evidence for the most massive loss of eye genes reported so far in cavefishes. Comparisons with a recently-evolved cave population of Astyanax mexicanus and three species belonging to the tetraploid Chinese genus Sinocyclocheilus revealed the combined effects of the level of eye regression, time and genome ploidy on the number of eye pseudogenes. In sharp contrast, most circadian clock and pigmentation genes appeared under strong selection. In cavefishes for which complete genomes are available, the limited extent of eye gene decay and the very small number of loss of function (LoF) mutations per pseudogene suggest that eye degeneration is never very ancient, ranging from early to late Pleistocene. This is in sharp contrast with the identification of several eye pseudogenes carrying many LoF mutations in ancient fossorial mammals. Our analyses support the hypothesis that blind fishes cannot thrive more than a few millions of years in cave ecosystems. Key words: cavefishes, eye genes, pseudogenization, machine learning, relaxed selection, molecular dating.
0

Sulfur starvation-induced autophagy in Saccharomyces cerevisiae involves SAM-dependent signaling and transcription activator Met4

Magali Prigent et al.Aug 13, 2024
Abstract Autophagy is a key lysosomal degradative mechanism allowing a prosurvival response to stresses, especially nutrient starvation. Here we investigate the mechanism of autophagy induction in response to sulfur starvation in Saccharomyces cerevisiae . We found that sulfur deprivation leads to rapid and widespread transcriptional induction of autophagy-related ( ATG ) genes in ways not seen under nitrogen starvation. This distinctive response depends mainly on the transcription activator of sulfur metabolism Met4. Consistently, Met4 is essential for autophagy under sulfur starvation. Depletion of either cysteine, methionine or SAM induces autophagy flux. However, only SAM depletion can trigger strong transcriptional induction of ATG genes and a fully functional autophagic response. Furthermore, combined inactivation of Met4 and Atg1 causes a dramatic decrease in cell survival under sulfur starvation, highlighting the interplay between sulfur metabolism and autophagy to maintain cell viability. Thus, we describe a pathway of sulfur starvation-induced autophagy depending on Met4 and involving SAM as signaling sulfur metabolite.
0

Maternal inheritance of functional centrioles in two parthenogenetic nematodes

Aurélien Perrier et al.Jul 18, 2024
Abstract Centrioles are the core constituent of centrosomes, microtubule-organizing centers involved in directing mitotic spindle assembly and chromosome segregation in animal cells. In sexually reproducing species, centrioles degenerate during oogenesis and female meiosis is usually acentrosomal. Centrioles are retained during male meiosis and, in most species, are reintroduced with the sperm during fertilization, restoring centriole numbers in embryos. In contrast, the presence, origin, and function of centrioles in parthenogenetic species is unknown. We found that centrioles are maternally inherited in two species of asexual parthenogenetic nematodes and identified two different strategies for maternal inheritance evolved in the two species. In Rhabditophanes diutinus , centrioles organize the poles of the meiotic spindle and are inherited by both the polar body and embryo. In Disploscapter pachys , the two pairs of centrioles remain close together and are inherited by the embryo only. Our results suggest that maternally-inherited centrioles organize the embryonic spindle poles and act as a symmetry-breaking cue to induce embryo polarization. Thus, in these parthenogenetic nematodes, centrioles are maternally-inherited and functionally replace their sperm-inherited counterparts in sexually reproducing species.