JM
Jiacheng Miao
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
24
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
40

Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics

Jiacheng Miao et al.May 29, 2022
Abstract Polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS) of Europeans are known to have substantially reduced predictive accuracy in non-European populations, limiting its clinical utility and raising concerns about health disparities across ancestral populations. Here, we introduce a novel statistical framework named X-Wing to improve predictive performance in ancestrally diverse populations. X-Wing quantifies local genetic correlations for complex traits between populations, employs a novel annotation-dependent estimation procedure to amplify correlated genetic effects between populations, and combines multiple population-specific PRS into a unified score with GWAS summary statistics alone as input. Through extensive benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and substantially improves PRS performance in non-European populations, showing 18.7%-122.1% gain in predictive R 2 compared to state-of-the-art methods based on GWAS summary statistics. Overall, X-Wing addresses critical limitations in existing approaches and may have broad applications in cross-population polygenic prediction.
40
Citation7
0
Save
0

A quantile integral linear model to quantify genetic effects on phenotypic variability

Jiacheng Miao et al.Apr 14, 2021
Abstract Detecting genetic variants associated with the variance of complex traits, i.e. variance quantitative trait loci (vQTL), can provide crucial insights into the interplay between genes and environments and how they jointly shape human phenotypes in the population. We propose a quantile integral linear model (QUAIL) to estimate genetic effects on trait variability. Through extensive simulations and analyses of real data, we demonstrate that QUAIL provides computationally efficient and statistically powerful vQTL mapping that is robust to non-Gaussian phenotypes and confounding effects on phenotypic variability. Applied to UK Biobank (N=375,791), QUAIL identified 11 novel vQTL for body mass index (BMI). Top vQTL findings showed substantial enrichment for interactions with physical activities and sedentary behavior. Further, variance polygenic scores (vPGS) based on QUAIL effect estimates showed superior predictive performance on both population-level and within-individual BMI variability compared to existing approaches. Overall, QUAIL is a unified framework to quantify genetic effects on the phenotypic variability at both single-variant and vPGS levels. It addresses critical limitations in existing approaches and may have broad applications in future gene-environment interaction studies.
0
Citation3
0
Save