CB
Christopher Bohrer
Author with expertise in Fluorescence Microscopy Techniques
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
14
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Pairwise Distance Distribution Correction (DDC) algorithm to eliminate blinking-caused artifacts in super-resolution microscopy

Christopher Bohrer et al.Sep 12, 2019
+11
X
X
C
Abstract In single-molecule localization based super-resolution microscopy (SMLM), a fluorophore stochastically switches between fluorescent- and dark-states, leading to intermittent emission of fluorescence, a phenomenon known as blinking. Intermittent emissions create multiple localizations belonging to the same molecule, resulting in blinking-artifacts within SMLM images. These artifacts are often interpreted as true biological assemblies, confounding quantitative analyses and interpretations. Multiple methods have been developed to eliminate these artifacts, but they either require additional experiments, arbitrary thresholds, or specific photo-kinetic models. Here we present a method, termed Distance Distribution Correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on the finding that the true pairwise distance distribution of different fluorophores in an SMLM image can be naturally obtained from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that using the true pairwise distribution we can define and then maximize the likelihood of obtaining a particular set of localizations void of blinking-artifacts, generating an accurate reconstruction of the underlying cellular structure. Using both simulated and experimental data, we show that DDC surpasses all previous existing blinking-artifact correction methodologies, resulting in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications. The simplicity and robustness of DDC will allow it to become the field standard in SMLM imaging, enabling the most accurate reconstruction and quantification of SMLM images to date.
0

Tau forms oligomeric complexes on microtubules that are distinct from pathological oligomers in disease

Melina Gyparaki et al.Jul 8, 2020
+4
A
J
M
Abstract Tau is a microtubule-associated protein, which promotes neuronal microtubule assembly and stability. Accumulation of tau into insoluble aggregates known as neurofibrillary tangles (NFTs) is a pathological hallmark of several neurodegenerative diseases. The current hypothesis is that small, soluble oligomeric tau species preceding NFT formation cause toxicity. However, thus far visualizing the spatial distribution of tau monomers and oligomers inside cells under physiological or pathological conditions has not been possible. Here, using single molecule localization microscopy (SMLM), we show that, in vivo , tau forms small oligomers on microtubules under physiological conditions. These physiological oligomers are distinct from those found in cells exhibiting tau aggregation and could be pre-cursors of aggregated tau in pathology. Further, using an unsupervised shape classification algorithm that we developed, we show that different tau phosphorylation states are associated with distinct tau aggregate species. Our work elucidates tau’s nanoscale composition under physiological and pathological conditions in vivo .
0
Citation3
0
Save
11

Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes

Christopher Bohrer et al.Jul 8, 2022
D
C
Abstract The role of the spatial organization of chromosomes in directing transcription remains an outstanding question in gene regulation. Here, we analyze two recent single-cell imaging methodologies applied across hundreds of genes to systematically analyze the contribution of chromosome conformation to transcriptional regulation. Those methodologies are: 1) single-cell chromatin tracing with super-resolution imaging in fixed cells; 2) high throughput labeling and imaging of nascent RNA in living cells. Specifically, we determine the contribution of physical distance to the coordination of transcriptional bursts. We find that individual genes adopt a constrained conformation and reposition toward the centroid of the surrounding chromatin upon activation. Leveraging the variability in distance inherent in single-cell imaging, we show that physical distance – but not genomic distance – between genes on individual chromosomes is the major factor driving co-bursting. By combining this analysis with live-cell imaging, we arrive at a corrected transcriptional correlation of ϕ ≈ 0.3 for genes separated by < 400 nm. We propose that this surprisingly large correlation represents a physical property of human chromosomes and establishes a benchmark for future experimental studies.
11
Citation2
0
Save
0

HiTIPS: High-Throughput Image Processing Software for the Study of Nuclear Architecture and Gene Expression

Adib Keikhosravi et al.Nov 5, 2023
+6
C
F
A
Abstract High-throughput imaging (HTI) generates complex imaging datasets from a large number of experimental perturbations. Commercial HTI software for image analysis workflows does not allow full customization and adoption of new image processing algorithms in the analysis modules. While open-source HTI analysis platforms provide individual modules in the workflow, like nuclei segmentation, spot detection, or cell tracking, they are often limited in integrating novel analysis modules or algorithms. Here, we introduce the High-Throughput Image Processing Software (HiTIPS) to expand the range and customization of existing HTI analysis capabilities. HiTIPS incorporates advanced image processing and machine learning algorithms for automated cell and nuclei segmentation, spot signal detection, nucleus tracking, spot tracking, and quantification of spot signal intensity. Furthermore, HiTIPS features a graphical user interface that is open to integration of new algorithms for existing analysis pipelines and to adding new analysis pipelines through separate plugins. To demonstrate the utility of HiTIPS, we present three examples of image analysis workflows for high-throughput DNA FISH, immunofluorescence (IF), and live-cell imaging of transcription in single cells. Altogether, we demonstrate that HiTIPS is a user-friendly, flexible, and open-source HTI analysis platform for a variety of cell biology applications.
5

Light-dependent modulation of protein localization and function in living bacteria cells

Ryan McQuillen et al.May 1, 2022
+2
C
X
R
Abstract Most bacteria lack membrane-enclosed organelles to compartmentalize cellular processes. In lieu of physical compartments, bacterial proteins are often recruited to macromolecular scaffolds at specific subcellular locations to carry out their functions. Consequently, the ability to modulate a protein’s subcellular location with high precision and speed bears the potential to manipulate its corresponding cellular functions. Here we demonstrate that the CRY2/CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations inside live E. coli cells including the nucleoid, the cell pole, membrane, and the midcell division plane. We further show that such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E. coli cells. Finally, we demonstrate that the CRY2/CIBN binding kinetics can be modulated by green light, adding a new dimension of control to the system.
5
Paper
Citation1
1
Save
0

3D chromatin architecture, BRD4, and Mediator have distinct roles in regulating genome-wide transcriptional bursting and gene network

Paweł Trzaskoma et al.Aug 9, 2024
+16
A
S
P
Discontinuous transcription is evolutionarily conserved and a fundamental feature of gene regulation; yet, the exact mechanisms underlying transcriptional bursting are unresolved. Analyses of bursting transcriptome-wide have focused on the role of cis-regulatory elements, but other factors that regulate this process remain elusive. We applied mathematical modeling to single-cell RNA sequencing data to infer bursting dynamics transcriptome-wide under multiple conditions to identify possible molecular mechanisms. We found that Mediator complex subunit 26 (MED26) primarily regulates frequency, MYC regulates burst size, while cohesin and Bromodomain-containing protein 4 (BRD4) can modulate both. Despite comparable effects on RNA levels among these perturbations, acute depletion of MED26 had the most profound impact on the entire gene regulatory network, acting downstream of chromatin spatial architecture and without affecting TATA box-binding protein (TBP) recruitment. These results indicate that later steps in the initiation of transcriptional bursts are primary nodes for integrating gene networks in single cells.
0

Spatially compartmentalized phase regulation of a Ca2+-cAMP-PKA oscillatory circuit

Brian Tenner et al.Jan 11, 2020
+7
B
M
B
Signaling networks are spatiotemporally organized in order to sense diverse inputs, process information, and carry out specific cellular tasks. In pancreatic β cells, Ca2+, cyclic adenosine monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of feedback, which allows for specific signaling controls based on the oscillation frequencies. Here, we describe a novel mode of regulation within this circuit involving a spatial dependence of the relative phase between cAMP, PKA, and Ca2+. We show that nanodomain clustering of Ca2+-sensitive adenylyl cyclases drives oscillations of local cAMP levels to be precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintain out-of-phase oscillations outside of the nanodomain, representing a striking example and novel mechanism of cAMP compartmentation. Disruption of this precise in-phase relationship perturbs Ca2+ oscillations, suggesting that the relative phase within an oscillatory circuit can encode specific functional information. This example of a signaling nanodomain utilized for localized tuning of an oscillatory circuit has broad implications for the spatiotemporal regulation of signaling networks.
0

RNA polymerase organizes into distinct spatial clusters independent of ribosomal RNA transcription in E. coli

Xiaoli Weng et al.May 11, 2018
+4
K
C
X
Recent studies have shown that RNA polymerase (RNAP) is spatially organized into distinct clusters in E. coli and B. subtilis cells. Spatially organized molecular components in prokaryotic systems imply compartmentalization without the use of membranes, which may offer new insights into pertinent functions and regulations. However, the function of RNAP clusters and whether its formation is driven by active ribosomal RNA (rRNA) transcription remain elusive. In this work, we investigated the spatial organization of RNAP in E. coli cells using quantitative superresolution imaging. We observed that RNAP formed large, distinct clusters under a rich medium growth condition and preferentially located in the center of the nucleoid. Two-color superresolution colocalization imaging showed that under the rich medium growth condition, nearly all RNAP clusters were active in synthesizing rRNA, suggesting that rRNA synthesis may be spatially separated from mRNA synthesis that most likely occurs at the nucleoid periphery. Surprisingly, a large fraction of RNAP clusters persisted under conditions in which rRNA synthesis was reduced or abolished, or when only one out of the seven rRNA operons (rrn) remained. Furthermore, when gyrase activity was inhibited, we observed a similar rRNA synthesis level, but multiple dispersed, smaller rRNA and RNAP clusters occupying not only the center but also the periphery of the nucleoid, comparable to an expanded nucleoid. These results suggested that RNAP was organized into active transcription centers for rRNA synthesis under the rich medium growth condition; their presence and spatial organization, however, were independent of rRNA synthesis activity under the conditions used but were instead influenced by the structure and characteristics of the underlying nucleoid. Our work opens the door for further investigations of the function and molecular nature of RNAP clusters and points to a potentially new mechanism of transcription regulation by the spatial organization of individual molecular components.
1

A spatially resolved stochastic model reveals the role of supercoiling in transcription regulation

Yuncong Geng et al.Dec 29, 2021
+5
N
C
Y
Abstract In Escherichia coli , translocation of RNA polymerase (RNAP) during transcription introduces supercoiling to DNA, which influences the initiation and elongation behaviors of RNAP. To quantify the role of supercoiling in transcription regulation, we develop a spatially resolved supercoiling model of transcription, describing RNAP-supercoiling interactions, topoisomerase activities, stochastic topological domain formation, and supercoiling diffusion in all transcription stages. This model establishes that transcription-induced supercoiling mediates the cooperation of co-transcribing RNAP molecules in highly expressed genes. It reveals that supercoiling transmits RNAP-accessible information through DNA and enables different RNAP molecules to communicate within and between genes. It thus predicts that a topological domain could serve as a transcription regulator, generating substantial transcription bursting and coordinating communications between adjacent genes in the domain. The model provides a quantitative platform for further theoretical and experimental investigations of how genome organization impacts transcription. Author Summary DNA mechanics and transcription dynamics are intimately coupled. During transcription, the translocation of RNA polymerase overwinds the DNA ahead and underwinds the DNA behind, rendering the DNA supercoiled. The supercoiled DNA could, in return, influences the behavior of the RNA polymerase, and consequently the amount of mRNA product it makes. Furthermore, supercoils could propagate on the DNA over thousands of base pairs, impacting RNA polymerase molecules at faraway sites. These complicated interplays between supercoiling and RNA polymerase makes supercoiling an important transcription regulator. To quantitatively investigate the role of supercoiling in transcription, we build a spatially resolved model that links transcription with the generation, propagation, and dissipation of supercoiling. Our model reveals that supercoiling mediates transcription at multiple length scales. At a single-gene scale, we show that supercoiling gives rise to the collective motion of co-transcribing RNA polymerase molecules, supporting recent experimental observations. Additionally, large variations in mRNA production of a gene can arise from the constraints of supercoiling diffusion in a topological domain. At a multi-gene scale, we show that supercoiling dynamics allow two adjacent genes influence each other’s transcription kinetics, thus serving as a transcription regulator.
0

New Cell Fate Potentials and Switching Kinetics Uncovered in a Classic Bistable Genetic Switch

Xiaona Fang et al.Nov 7, 2017
+4
J
W
X
Bistable switches are common gene regulatory motifs directing two mutually exclusive gene expression states, and consequently distinct cell fates. Theoretical studies suggest that the simple circuitry of bistable switches is sufficient to encode more than two cell fates due to the non-equilibrium, heterogeneous cellular environment, allowing a high degree of adaptation and differentiation. However, new cell fates arising from a classic bistable switch without rewiring the circuitry have not been experimentally observed. By developing a new, dual single-molecule gene-expression reporting system in live E. coli cells, we investigated the expression dynamics of two mutually repressing transcription factors, CI and Cro, in the classic genetic switch of bacteriophage. We found that in addition to the two expected high-Cro and high-CI production states, there existed two new ones, in which neither CI nor Cro was produced, or both CI and Cro were produced. We constructed the corresponding potential landscape and mapped the transition kinetics between the four production states, providing insight into possible state-switching rates and paths. These findings uncover new cell fate potentials beyond the classical picture of switch, and open a new window to explore the genetic and environmental origins of the cell fate decision-making process in gene regulatory networks.
Load More