OP
Olli Pietiläinen
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
9
h-index:
18
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Efficient generation of lower induced Motor Neurons by coupling Ngn2 expression with developmental cues

Francesco Limone et al.Jan 12, 2022
SUMMARY Human pluripotent stem cells (hPSCs) are a powerful tool for disease modelling and drug discovery, especially when access to primary tissue is limited, such as in the brain. Current neuronal differentiation approaches use either small molecules for directed differentiation or transcription-factor-mediated programming. In this study we coupled the overexpression of the neuralising transcription factor Neurogenin2 ( Ngn2 ) with small molecule patterning to differentiate hPSCs into lower induced Motor Neurons (liMoNes). We showed that this approach induced activation of the motor neuron (MN) specific transcription factor Hb9/MNX1 , using an Hb9 ::GFP-reporter line, with up to 95% of cells becoming Hb9 ::GFP + . These cells acquired and maintained expression of canonical early and mature MN markers. Molecular and functional profiling revealed that liMoNes resembled bona fide hPSC-derived MN differentiated by conventional small molecule patterning. liMoNes exhibited spontaneous electrical activity, expressed synaptic markers and formed contacts with muscle cells in vitro . Pooled, multiplex single-cell RNA sequencing on 50 cell lines revealed multiple anatomically distinct MN subtypes of cervical and brachial, limb-innervating MNs in reproducible quantities. We conclude that combining small molecule patterning with Ngn2 can facilitate the high-yield, robust and reproducible production of multiple disease-relevant MN subtypes, which is fundamental in the path to propel forward our knowledge of motoneuron biology and its disruption in disease.
4
Citation5
0
Save
0

Contribution of rare and common variants to intellectual disability in a high-risk population sub-isolate of Northern Finland

Mitja Kurki et al.May 28, 2018
Abstract The contribution of de novo and ultra-rare genetic variants in severe and moderate intellectual disability (ID) has been extensively studied whereas the genetic architecture of mild ID has been less well characterized. To elucidate the genetic background of milder ID we studied a regional cohort of 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. We analyzed rare variants using exome sequencing and CNV genotyping and common variants using common variant polygenic risk scores. As controls we used a Finnish collection of exome sequenced (n=11311) and GWAS chip genotyped (n=11699) individuals. We show that rare damaging variants in genes known to be associated with cognitive defects are observed more often in severe (27%) than in mild ID (13%) patients (p-value: 7.0e-4). We further observed a significant enrichment of protein truncating variants in loss-of-function intolerant genes, as well as damaging missense variants in genes not yet associated with cognitive defects (OR: 2.1, p-value: 3e-8). For the first time to our knowledge, we show that a common variant polygenic load significantly contributes to all severity forms of ID. The heritability explained was the highest for educational attainment (EDU) in mild ID explaining 2.2% of the heritability on liability scale. For more severe ID it was lower at 0.6%. Finally, we identified a homozygote variant in the CRADD gene to be a cause of a specific syndrome with ID and pachygyria. The frequency of this variant is 50x higher in the Finnish population than in non-Finnish Europeans, demonstrating the benefits of utilizing population isolates in rare variant analysis of diseases under negative selection.
0
Citation3
0
Save
3

SARS-CoV-2 infection of human neurons requires endosomal cell entry and can be blocked by inhibitors of host phosphoinositol-5 kinase

Pinja Kettunen et al.Sep 16, 2022
Abstract COVID-19 is a disease caused by coronavirus SARS-CoV-2. In addition to respiratory illness, COVID-19 patients exhibit neurological symptoms that can last from weeks to months (long COVID). It is unclear whether these neurological manifestations are due to infection of brain cells. We found that a small fraction of cortical neurons, but not astrocytes, were naturally susceptible to SARS-CoV-2. Based on the inhibitory effect of blocking antibodies, the infection seemed to depend on the receptor angiotensin-converting enzyme 2 (ACE2), which was expressed at very low levels. Although only a limited number of neurons was infectable, the infection was productive, as demonstrated by the presence of double-stranded RNA in the cytoplasm (the hallmark of viral replication), abundant synthesis of viral late genes localized throughout the neuronal cell, and an increase in viral RNA in the culture medium within the first 48 h of infection (viral release). The productive entry of SARS-CoV-2 requires the fusion of the viral and cellular membranes, which results in the delivery of viral genome into the cytoplasm of the target cell. The fusion is triggered by proteolytic cleavage of the viral surface protein spike, which can occur at the plasma membrane or from endo/lysosomes. Using specific combinations of small-molecule inhibitors, we found that SARS-CoV-2 infection of human neurons was insensitive to nafamostat and camostat, which inhibit cellular serine proteases found on the cell surface, including TMPRSS2. In contrast, the infection was blocked by apilimod, an inhibitor of phosphatidyl-inositol 5 kinase (PIK5K) that regulates endosomal maturation. Importance COVID-19 is a disease caused by coronavirus SARS-CoV-2. Millions of patients display neurological symptoms, including headache, impairment of memory, seizures and encephalopathy, as well as anatomical abnormalities such as changes in brain morphology. Whether these symptoms are linked to brain infection is not clear. The mechanism of the virus entry into neurons has also not been characterized. Here we investigated SARS-CoV-2 infection using a human iPSC-derived neural cell model and found that a small fraction of cortical neurons was naturally susceptible to infection. The infection depended on the ACE2 receptor and was productive. We also found that the virus used the late endosomal/lysosomal pathway for cell entry and that the infection could be blocked by apilimod, an inhibitor of the cellular phosphatidyl-inositol 5 kinase.
3
Citation1
0
Save
0

Astrocytes regulate neuronal network burst frequency through NMDA receptors species- and donor-specifically

Noora Räsänen et al.Jan 1, 2023
Development of synaptic activity is a neuronal key characteristic that relies largely on interactions between neurons and astrocytes. Although astrocytes have known roles in regulating synaptic function and malfunction, the use of human or donor-specific astrocytes in disease models is still rare. Rodent astrocytes are routinely used to enhance neuronal activity in cell cultures, but less is known how human astrocytes influence neuronal activity. Here, we established human induced pluripotent stem cell (hiPSC)-derived neuron-astrocyte co-cultures and studied their functional development on microelectrode array (MEA). We used cell lines from 5 neurotypical control individuals and 3 pairs of monozygotic twins discordant for schizophrenia. A method combining Ngn2 overexpression and dual SMAD inhibition was used for neuronal differentiation. The neurons were co-cultured with hiPSC-derived astrocytes differentiated from 6-month-old astrospheres or rat astrocytes. We found that the hiPSC-derived co-cultures develop complex network bursting activity similarly to neuronal co-cultures with rat astrocytes. However, the effect of NMDA receptors on neuronal network burst frequency (NBF) differed between co-cultures containing human or rat astrocytes. By using co-cultures derived from patients with schizophrenia and unaffected individuals, we found lowered NBF in the affected cells. We continued to demonstrate how astrocytes from an unaffected individual rescue the lowered NBF in the affected neurons by increasing NMDA receptor activity. Our results indicate that astrocytes participate in the regulation of neuronal NBF through a mechanism involving NMDA receptors. These findings shed light on the importance of using human and donor-specific astrocytes in disease modeling.
0

Genomic dissection of bipolar disorder and schizophrenia including 28 subphenotypes

Douglas Ruderfer et al.Aug 8, 2017
Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable disorders that share a significant proportion of common risk variation. Understanding the genetic factors underlying the specific symptoms of these disorders will be crucial for improving diagnosis, intervention and treatment. In case-control data consisting of 53,555 cases (20,129 BD, 33,426 SCZ) and 54,065 controls, we identified 114 genome-wide significant loci (GWS) when comparing all cases to controls, of which 41 represented novel findings. Two genome-wide significant loci were identified when comparing SCZ to BD and a third was found when directly incorporating functional information. Regional joint association identified a genomic region of overlapping association in BD and SCZ with disease-independent causal variants indicating a fourth region contributing to differences between these disorders. Regional SNP-heritability analyses demonstrated that the estimated heritability of BD based on the SCZ GWS regions was significantly higher than that based on the average genomic region (91 regions, p = 1.2x10-6) while the inverse was not significant (19 regions, p=0.89). Using our BD and SCZ GWAS we calculated polygenic risk scores and identified several significant correlations with: 1) SCZ subphenotypes: negative symptoms (SCZ, p=3.6x10-6) and manic symptoms (BD, p=2x10-5), 2) BD subphenotypes: psychotic features (SCZ p=1.2x10-10, BD p=5.3x10-5) and age of onset (SCZ p=7.9x10-4). Finally, we show that psychotic features in BD has significant SNP-heritability (h2snp=0.15, SE=0.06), and a significant genetic correlation with SCZ (rg=0.34) in addition there is a significant sign test result between SCZ GWAS and a GWAS of BD cases contrasting those with and without psychotic features (p=0.0038, one-side binomial test). For the first time, we have identified specific loci pointing to a potential role of 4 genes (DARS2, ARFGEF2, DCAKD and GATAD2A) that distinguish between BD and SCZ, providing an opportunity to understand the biology contributing to clinical differences of these disorders. Our results provide the best evidence so far of genomic components distinguishing between BD and SCZ that contribute directly to specific symptom dimensions.