JH
Jeffrey Hord
Author with expertise in Molecular Mechanisms of Muscle Regeneration and Atrophy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
2
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identification of a short, single site matriglycan that maintains neuromuscular function in the mouse

Tiandi Yang et al.Dec 21, 2023
Matriglycan (-1,3-β-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.
0
Paper
Citation2
0
Save
1

Dystroglycan N-terminal domain enables LARGE1 to extend matriglycan on α-dystroglycan and prevents muscular dystrophy

Hirohisa Okuma et al.Aug 9, 2022
Abstract Dystroglycan (DG) requires extensive post-translational processing to function as a receptor for extracellular matrix proteins containing laminin-G-like (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose and glucuronic acid that is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1) and binds with high affinity to matrix proteins like laminin. Defects in the post-translational processing of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. However, little is known regarding mechanisms that generate full-length matriglycan on α-DG (~150-250 kDa). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in a ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force induced by eccentric contractions and abnormalities in neuromuscular junctions. Collectively, our study demonstrates that α-DGN is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.
0

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan

Jeffrey Hord et al.Jan 9, 2025
Abstract Background Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions. Extensive post-translational processing and O -mannosylation are required for α-DG to bind ECM proteins, which is mediated by a glycan structure known as matriglycan. O -mannose glycan biosynthesis is initiated by the protein O -mannosyltransferase 1 (POMT1) and POMT2 enzyme complex and leads to three subtypes of glycans called core M1, M2, and M3. The lengthy core M3 is capped with matriglycan. Genetic defects in post-translational O -mannosylation of DG interfere with its receptor function and result in muscular dystrophy with central nervous system and skeletal muscle pathophysiology. Methods To evaluate how the loss of O -mannosylated DG in skeletal muscle affects the development and progression of myopathology, we generated and characterized mice in which the Pomt1 gene was specifically deleted in skeletal muscle (Pomt1 skm ) to interfere with POMT1/2 enzyme activity. To investigate whether matriglycan is the primary core M glycan structure that provides the stabilizing link between the sarcolemma and ECM, we generated mice that retained cores M1, M2, and M3, but lacked matriglycan (conditional deletion of like-acetylglucosaminyltransferase 1 ; Large1 skm ). Next, we restored Pomt1 using gene transfer via AAV2/9-MCK-mPOMT1 and determined the effect on Pomt1 skm pathophysiology. Results Our data showed that in Pomt1 skm mice O -mannosylated DG is required for sarcolemma resilience, remodeling of muscle fibers and muscle tissue, and neuromuscular function. Notably, we observed similar body size limitations, sarcolemma weakness, and neuromuscular weakness in Large1 skm mice that only lacked matriglycan. Furthermore, our data indicate that genetic rescue of Pomt1 in Pomt1 skm mice limits contraction-induced sarcolemma damage and skeletal muscle pathology. Conclusions Collectively, our data indicate that DG modification by Pomt1/2 results in core M3 capped with matriglycan, and that this is required to reinforce the sarcolemma and enable skeletal muscle health and neuromuscular strength.