MP
Martin Pagac
Author with expertise in Atopic Dermatitis and Skin Microbiome
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
2
h-index:
8
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Fungal jasmonate as a novel morphogenetic signal for pathogenesis

Yingyao Liu et al.Apr 4, 2021
Abstract A key question that has remained unanswered is how pathogenic fungi switch from vegetative growth to infection-related morphogenesis during a disease cycle. Here, we identify a fungal oxylipin analogous to the well-known phytohormone jasmonic acid, as the principal morphogenesis signal responsible for such a developmental switch to pathogenicity in the rice-blast fungus Magnaporthe oryzae . We explored the molecular function(s) of such intrinsic jasmonic acid during pathogenic differentiation in M. oryzae via OPR1 , which encodes a 12-Oxo-phytodienoic Acid Reductase essential for its biosynthesis. Loss of OPR1 led to prolonged vegetative growth, and a delayed initiation and improper development of infection structures in M. oryzae , reminiscent of phenotypes observed in mutants (e.g. pth11 Δ and cpka Δ) that are compromised for cyclic AMP signaling. Genetic- or chemical-complementation completely restored proper germ tube growth and appressorium formation in opr1 Δ. Liquid chromatography mass spectrometry-based quantification revealed increased OPDA accumulation and a significant decrease in JA levels in the opr1 Δ. Most interestingly, exogenous jasmonic acid also restored appressorium formation in the pth11 Δ mutant that lacks G protein/cyclic AMP signaling. Epistasis analysis placed fungal jasmonate upstream of the cyclic AMP signaling in rice blast. Lastly, we show that intrinsic jasmonate orchestrates the cessation of vegetative phase and initiates pathogenic development via a regulatory interaction with the cyclic AMP cascade and redox signaling in rice blast.
4
Citation2
0
Save
0

Life stage impact on the human skin ecosystem: lipids and the microbial community

Martin Pagac et al.Jan 4, 2024
While research into gut-microbe interactions is common and advanced, with multiple defined impacts on human health, studies exploring the significance of skin-microbe interactions remain underrepresented. Skin is the largest human organ, has a vast surface area, and is inhabited by a plethora of microorganisms which metabolise sebaceous lipids. Sebaceous free fatty acids are metabolized into bioactive lipid mediators with immune-modulatory properties by skin-resident microbes, including Malassezia. Intriguingly, many of the same lipid mediators are also found on human skin, implying these compounds may have microbial or mixed microbial/human origin. To support this hypothesis, we isolated lipids and microbial DNA from the skin of prepubescent, adult, pre- and post-menopausal volunteers and performed correlational analyses using skin lipidomics and metagenomics to compare lipid mediator profiles and microbiome compositions on skin with either low or high sebaceous gland activity. We found that specific microbial taxonomies were positively and negatively correlated with skin lipid mediator species with high statistical significance. 2D in vitro co-cultures with Malassezia and keratinocytes also directly linked the production of specific lipid mediators, detected on healthy human skin, to secretion of immuno-stimulatory cytokines. Together, these findings further support the hypothesis that microbial-derived skin lipid mediators influence healthy skin homeostasis and skin disease development and progression, thereby spotlighting the relevance of the skin microbiome footprint on human health.