NT
Natalie Tanke
Author with expertise in Molecular Mechanisms of Angiogenesis and Vascular Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
4
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Nuclear SUN1 Stabilizes Endothelial Cell Junctions via Microtubules to Regulate Blood Vessel Formation

Danielle Buglak et al.Aug 11, 2021
ABSTRACT Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here we show that the nuclear-localized LINC complex protein SUN1 regulates vascular sprouting and barrier function via effects on endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted barrier function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and barrier function. SUMMARY The nuclear membrane protein SUN1 promotes blood vessel formation and barrier function by stabilizing endothelial cell-cell junctions. Communication between SUN1 and endothelial cell junctions relies upon proper microtubule dynamics and Rho signaling far from the nucleus, revealing long-range cellular communication from the nucleus to the cell periphery that is important for vascular development and function.
1
Citation4
0
Save
2

HES1andID3temporally regulate p27 levels and endothelial cell flow-mediated quiescence depth

Natalie Tanke et al.Jun 11, 2023
Vascular endothelial cells regulate their cell cycle as blood vessels remodel and mature, and as they transition from active angiogenesis to quiescence. Mechanical cues provided by fluid shear stress orchestrate this transition, and laminar blood flow instigates a quiescent (G0) state and homeostasis. However, how flow-mediated quiescence is set up and maintained is poorly understood. We found that flow-mediated endothelial cell quiescence has unique properties and temporal regulation of quiescence depth. Flow-exposed endothelial cells had a distinct transcriptome, and quiescent endothelial cells re-entered the cell cycle more rapidly after extended flow exposure compared to contact inhibition, indicating a shallow quiescence depth. The cell cycle inhibitor CDKN1B (p27) was required for endothelial cell flow-mediated quiescence but was not significantly expressed after extended flow exposure. Rather, flow-exposed endothelial cells first established a deep quiescence that subsequently became shallow, and p27 levels positively correlated with these distinct quiescent states. HES1 and ID3, transcriptional repressors of p27 downstream of flow-regulated Notch and BMP signaling, were required for flow-mediated quiescence depth changes and the reduced p27 levels associated with shallow quiescence. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of transcriptional regulation of p27.
0

Differential endothelial cell cycle status in postnatal retinal vessels revealed using a novel PIP-FUCCI reporter and zonation analysis

Ziqing Liu et al.Jan 5, 2024
Cell cycle regulation is critical to blood vessel formation and function, but how the endothelial cell cycle integrates with vascular regulation is not well-understood, and available dynamic cell cycle reporters do not precisely distinguish all cell cycle stage transitions in vivo. Here we characterized a recently developed improved cell cycle reporter (PIP-FUCCI) that precisely delineates S phase and the S/G2 transition. Live image analysis of primary endothelial cells revealed predicted temporal changes and well-defined stage transitions. A new inducible mouse cell cycle reporter allele was selectively expressed in postnatal retinal endothelial cells upon Cre-mediated activation and predicted endothelial cell cycle status. We developed a semi-automated zonation program to define endothelial cell cycle status in spatially defined and developmentally distinct retinal areas and found predicted cell cycle stage differences in arteries, veins, and remodeled and angiogenic capillaries. Surprisingly, the predicted dearth of proliferative tip cells at the vascular front was accompanied by an unexpected enrichment for endothelial tip cells in G2, suggesting G2 stalling as a contribution to tip-cell arrest. Thus, this improved reporter precisely defines endothelial cell cycle status in vivo and reveals novel G2 regulation that may contribute to unique aspects of blood vessel network expansion.
0

Differential endothelial cell cycle status in postnatal retinal vessels revealed using a novel PIP-FUCCI reporter and zonation analysis

Ziqing Liu et al.May 25, 2024
Cell cycle regulation is critical to blood vessel formation and function, but how the endothelial cell cycle integrates with vascular regulation is not well-understood, and available dynamic cell cycle reporters do not precisely distinguish all cell cycle stage transitions in vivo. Here we characterized a recently developed improved cell cycle reporter (PIP-FUCCI) that precisely delineates S phase and the S/G2 transition. Live image analysis of primary endothelial cells revealed predicted temporal changes and well-defined stage transitions. A new inducible mouse cell cycle reporter allele was selectively expressed in postnatal retinal endothelial cells upon Cre-mediated activation and predicted endothelial cell cycle status. We developed a semi-automated zonation program to define endothelial cell cycle status in spatially defined and developmentally distinct retinal areas and found predicted cell cycle stage differences in arteries, veins, and remodeled and angiogenic capillaries. Surprisingly, the predicted dearth of S-phase proliferative tip cells relative to stalk cells at the vascular front was accompanied by an unexpected enrichment for endothelial tip and stalk cells in G2, suggesting G2 stalling as a contribution to tip-cell arrest and dynamics at the front. Thus, this improved reporter precisely defines endothelial cell cycle status in vivo and reveals novel G2 regulation that may contribute to unique aspects of blood vessel network expansion.