CC
Christian Cammarota
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
2
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Competition Between Cell-Cell and Cell-Substrate Adhesion Determines Epithelial Monolayer Architecture in Culture

Christian Cammarota et al.Sep 13, 2021
Summary Organ surfaces are lined by epithelial monolayers - sheets of cells that are one-cell thick. This architecture underlies tissue function, and its loss is associated with disease, including cancer. Studies of in-plane epithelial cell behaviors show that a developing epithelium behaves as a fluid in respect to the tissue plane, and can therefore readily adapt to varying mechanical influences during morphogenesis. We asked the question of how monolayer architecture is achieved, and whether it demonstrates the same fluid behavior. To address this problem, we cultured MDCK (Madin-Darby Canine Kidney) cell layers at different densities and timepoints and analyzed their architectures using a novel tool, Automated Layer Analysis (ALAn), which we introduce here. Our experimental and theoretical results lead us to propose that epithelial monolayer architecture is governed by a balance of counteracting forces due to cell-cell and cell-substrate adhesion, and that this balance is influenced by cell density. MDCK cells do not undergo obvious rearrangement along the apical-basal axis; instead, cells that do not contact the substrate aggregate on top of the monolayer. Our findings therefore imply that monolayered architecture is under more rigid control than planar tissue shape in epithelia.
1
Citation1
0
Save
1

The Mechanical Influence of Densification on Initial Epithelial Architecture

Christian Cammarota et al.May 9, 2023
Summary Epithelial tissues are the most abundant tissue type in animals, lining body cavities and generating compartment barriers. The function of a monolayer epithelium – whether protective, secretory, absorptive, or filtrative –relies on regular tissue architecture with respect to the apical-basal axis. Using an unbiased 3D analysis pipeline developed in our lab, we previously showed that epithelial tissue architectures in culture can be divided into distinct developmental categories, and that these are intimately connected to cell density: at sparse densities, cultured epithelial cell layers have a squamous morphology (Immature); at intermediate densities, these layers develop lateral cell-cell borders and rounded cell apices (Intermediate); cells at the highest densities reach their full height and demonstrate flattened apices (Mature). These observations prompted us to ask whether epithelial architecture emerges from the mechanical constraints of densification, and to what extent a hallmark feature of epithelial cells, namely cell-cell adhesion, contributes. In other words, to what extent is the shape of cells in an epithelial layer a simple matter of sticky, deformable objects squeezing together? We addressed this problem using a combination of computational modeling and experimental manipulations. Our results show that the first morphological transition, from Immature to Intermediate, can be explained simply by cell crowding. Additionally, we identify a new division (and thus transition) within the Intermediate category, and find that this second morphology relies on cell-cell adhesion.