YM
Yuhao Min
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
13
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Single Nuclei Transcriptome Reveals Perturbed Brain Vascular Molecules in Alzheimer’s Disease

Özkan İş et al.Dec 29, 2021
Abstract Blood-brain barrier (BBB) dysfunction is well-known in Alzheimer’s disease (AD), but the precise molecular changes contributing to its pathophysiology are unclear. To understand the transcriptional changes in brain vascular cells, we performed single nucleus RNA sequencing (snRNAseq) of temporal cortex tissue in 24 AD and control brains resulting in 79,751 nuclei, 4,604 of which formed three distinct vascular clusters characterized as activated pericytes, endothelia and resting pericytes. We identified differentially expressed genes (DEGs) and their enriched pathways in these clusters and detected the most transcriptional changes within activated pericytes. Using our data and a knowledge-based predictive algorithm, we discovered and prioritized molecular interactions between vascular and astrocyte clusters, the main cell types of the gliovascular unit (GVU) of the BBB. Vascular targets predicted to interact with astrocytic ligands have biological functions in signalling, angiogenesis, amyloid ß metabolism and cytoskeletal structure. Top astrocytic and vascular interacting molecules include both novel and known AD risk genes such as APOE , APP and ECE1 . Our findings provide information on transcriptional changes in predicted vascular-astrocytic partners at the GVU, bringing insights to the molecular mechanisms of BBB breakdown in AD. Graphical Abstract Pericytes (yellow), endothelia (salmon) and astrocytes (purple) that form the gliovascular unit (GVU) at the blood brain barrier (BBB) were interrogated for their differentially expressed genes (DEG) and vascular cell (pericyte or endothelia) to astrocyte interactions using single nucleus RNA sequencing (RNAseq) transcriptome obtained from brains of Alzheimer’s disease (AD) patients and controls. We identified many upregulated (red) or downregulated (blue) DEGs in AD brains in these cell types. These genes have known biological functions in amyloid ß (Aß) clearance, immune modulation, astrogliosis and neuronal death. Novel predicted interactions were identified between vascular cells and astrocytic DEGs. Collectively, our findings highlight the vast transcriptome changes that occur at the GVU and provide mechanistic insights into BBB dysfunction in AD. This figure was created with Biorender.com.
4
Citation6
0
Save
4

Ngfr suppresses Lcn2/Slc22a17 signaling, induces neurogenesis and reduces amyloid pathology in the hippocampus of APP/PS1dE9 mouse

Tohid Siddiqui et al.Aug 21, 2022
Abstract Neurogenesis relates to the brain resilience and is reduced in Alzheimer’s disease (AD). Restoring healthy levels of neurogenesis could have beneficial effects for coping with neurodegeneration. However, molecular mechanisms that could enhance neurogenesis from astroglial progenitors in AD pathology are largely unknown. We used lentiviruses to express Ngfr in the hippocampus of the APP/PS1dE9 mouse model of AD, histologically analyzed the changes in proliferation of neural stem cells and neurogenesis; performed single-cell transcriptomics, spatial proteomics, and functional knockdown studies. We found that expression of Ngfr , a neurogenic determinant in pathology-induced neuroregeneration in zebrafish, stimulated proliferative and neurogenic outcome in the APP/PS1dE9 AD mouse model. Ngfr suppressed reactive astrocyte marker Lipocalin-2 (Lcn2) in astroglia. Blockage of Lcn2 receptor, Slc22a17, recapitulated the neurogenic effects of NGFR, and long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Furthermore, immunostaining on postmortem human hippocampi with AD or primary age-related Tauopathy and 3D human astroglial cultures showed that elevated LCN2 levels correlate with gliosis. By comparing transcriptional changes in mouse hippocampus, zebrafish brain, and human AD brains in terms of cell intrinsic differential gene expression analyses as well as weighted gene co-expression network analysis, we observed common potential downstream effectors of NGFR signaling, C4B and PFKP , that are relevant to AD. Our study links the regulatory role of an autocrine molecular mechanism in astroglia to the neurogenic ability and modulatory effects on amyloid and tau phosphorylation, opening new research avenues and suggesting that neurogenesis-oriented therapeutic approaches could be a potential clinical intervention for AD.
4
Citation4
0
Save
0

Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction

Özkan İş et al.Jun 20, 2024
Abstract To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer’s disease, we performed single nucleus RNA sequencing in 24 Alzheimer’s disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3 , upregulated in Alzheimer’s disease pericytes, has the highest number of ligands including VEGFA , downregulated in Alzheimer’s disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer’s disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer’s disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3 -astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer’s disease.
0
Citation2
0
Save
0

ABCA7-dependent Neuropeptide-Y signalling is a resilience mechanism required for synaptic integrity in Alzheimer’s disease

Hüseyin Tayran et al.Jan 2, 2024
Abstract Alzheimer’s disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 – an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aβ42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience. Abstract Figure Graphical abstract
0
Citation1
0
Save
13

Transcriptional landscape of human microglia reveals robust gene expression signatures that implicates age, sex and APOE-related immunometabolic pathway perturbations

Tulsi Patel et al.May 16, 2021
Abstract Microglia have fundamental roles in health and disease, however effects of age, sex and genetic factors on human microglia have not been fully explored. We applied bulk and single cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex and APOE . We identified a novel microglial signature, characterized its expression in bulk tissue and single cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex and APOE -ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2 and BIN1 . Meta-analyses with published bulk and single cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource; and highlight age, sex and APOE -related microglial immunometabolism perturbations with potential relevance in neurodegeneration.