Abstract MYB transcription factors play central roles in plant responses to abiotic stresses. How stress affects development is poorly understood. Here, we show that OsMYB3R-2 functions in both stress and developmental processes in rice (Oryza sativa). Transgenic plants overexpressing OsMYB3R-2 exhibited enhanced cold tolerance. Cold treatment greatly induced the expression of OsMYB3R-2, which encodes an active transcription factor. We show that OsMYB3R-2 specifically bound to a mitosis-specific activator cis-element, (T/C)C(T/C)AACGG(T/C)(T/C)A, a conserved sequence that was found in promoters of cyclin genes such as OsCycB1;1 and OsKNOLLE2. In addition, overexpression of OsMYB3R-2 in rice led to higher transcript levels of several G2/M phase-specific genes, including OsCycB1;1, OsCycB2;1, OsCycB2;2, and OsCDC20.1, than those in OsMYB3R-2 antisense lines or wild-type plants in response to cold treatment. Flow cytometry analysis revealed an increased cell mitotic index in overexpressed transgenic lines of OsMYB3R-2 after cold treatment. Furthermore, resistance to cold stress in the transgenic plants overexpressing OsCycB1;1 was also enhanced. The level of cellular free proline was increased in the overexpressed rice lines of OsMYB3R-2 and OsCycB1;1 transgenic plants compared with wild-type plants under the cold treatment. These results suggest that OsMYB3R-2 targets OsCycB1;1 and regulates the progress of the cell cycle during chilling stress. OsCPT1, which may be involved in the dehydration-responsive element-binding factor 1A pathway, showed the same transcription pattern in response to cold as did OsCycB1;1 in transgenic rice. Therefore, a cold resistance mechanism in rice could be mediated by regulating the cell cycle, which is controlled by key genes including OsMYB3R-2.