LE
Liz Enyenihi
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
3
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Somatic cancer driver mutations are enriched and associated with inflammatory states in Alzheimer’s disease microglia

August Huang et al.Jan 4, 2024
Summary Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-β and tau 1,2 . Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis 1–5 , though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases 6,7 . Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (∼two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH) 8,9 . Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH 10,11 . Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.
0
Citation3
0
Save
0

Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness

Anne Slavotinek et al.Apr 2, 2020
The RNA exosome is an essential ribonuclease complex involved in the processing and degradation of both coding and noncoding RNAs. We present three patients with biallelic variants in EXOSC5 , which encodes a structural subunit of the RNA exosome. The common clinical features of these patients comprise failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His, and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess the functional consequences of pathogenic variants in EXOSC5 . Loss of function for the zebrafish ortholog results in shortened and curved tails and bodies, reduced eye and head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants show defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. Overall, these findings expand the number of genes encoding RNA exosome components that have been implicated in human disease, while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
2

A Budding Yeast Model for Human Disease Mutations in the EXOSC2 Cap Subunit of the RNA Exosome

Maria Sterrett et al.Dec 11, 2020
RNA exosomopathies, a growing family of tissue-specific diseases, are linked to missense mutations in genes encoding the structural subunits of the conserved 10-subunit exoribonuclease complex, the RNA exosome. Such mutations in the cap subunit gene cause the novel syndrome SHRF ( hort stature, earing loss, etinitis pigmentosa and distinctive acies). In contrast, exosomopathy mutations in the cap subunit gene cause pontocerebellar hypoplasia type 1b (PCH1b). Though having strikingly different disease pathologies, and exosomopathy mutations result in amino acid substitutions in similar, conserved domains of the cap subunits, suggesting that these exosomopathy mutations have distinct consequences for RNA exosome function. We generated the first model of the SHRF pathogenic amino acid substitutions using budding yeast by introducing the mutations in the orthologous gene . The resulting mutant cells have defects in cell growth and RNA exosome function. We detect significant transcriptomic changes in both coding and non-coding RNAs in the variant, , which models p.Gly198Asp. Comparing this mutant to the previously studied model of PCH1b mutation, , reveals that these mutants have disparate effects on certain RNA targets, providing the first evidence for different mechanistic consequences of these exosomopathy mutations. Congruently, we detect specific negative genetic interactions between RNA exosome cofactor mutants and but not . These data provide insight into how SHRF mutations could alter the function of the RNA exosome and allow the first direct comparison of exosomopathy mutations that cause distinct pathologies.