HH
Heather Harrington
Author with expertise in Topological Data Analysis in Science and Engineering
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
830
h-index:
25
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A roadmap for the computation of persistent homology

Nina Otter et al.Aug 9, 2017
Persistent homology (PH) is a method used in topological data analysis (TDA) to study qualitative features of data that persist across multiple scales. It is robust to perturbations of input data, independent of dimensions and coordinates, and provides a compact representation of the qualitative features of the input. The computation of PH is an open area with numerous important and fascinating challenges. The field of PH computation is evolving rapidly, and new algorithms and software implementations are being updated and released at a rapid pace. The purposes of our article are to (1) introduce theory and computational methods for PH to a broad range of computational scientists and (2) provide benchmarks of state-of-the-art implementations for the computation of PH. We give a friendly introduction to PH, navigate the pipeline for the computation of PH with an eye towards applications, and use a range of synthetic and real-world data sets to evaluate currently available open-source implementations for the computation of PH. Based on our benchmarking, we indicate which algorithms and implementations are best suited to different types of data sets. In an accompanying tutorial, we provide guidelines for the computation of PH. We make publicly available all scripts that we wrote for the tutorial, and we make available the processed version of the data sets used in the benchmarking.
0

Multiscale topology classifies cells in subcellular spatial transcriptomics

Katherine Benjamin et al.Jun 19, 2024
Abstract Spatial transcriptomics measures in situ gene expression at millions of locations within a tissue 1 , hitherto with some trade-off between transcriptome depth, spatial resolution and sample size 2 . Although integration of image-based segmentation has enabled impactful work in this context, it is limited by imaging quality and tissue heterogeneity. By contrast, recent array-based technologies offer the ability to measure the entire transcriptome at subcellular resolution across large samples 3–6 . Presently, there exist no approaches for cell type identification that directly leverage this information to annotate individual cells. Here we propose a multiscale approach to automatically classify cell types at this subcellular level, using both transcriptomic information and spatial context. We showcase this on both targeted and whole-transcriptome spatial platforms, improving cell classification and morphology for human kidney tissue and pinpointing individual sparsely distributed renal mouse immune cells without reliance on image data. By integrating these predictions into a topological pipeline based on multiparameter persistent homology 7–9 , we identify cell spatial relationships characteristic of a mouse model of lupus nephritis, which we validate experimentally by immunofluorescence. The proposed framework readily generalizes to new platforms, providing a comprehensive pipeline bridging different levels of biological organization from genes through to tissues.
0
Citation3
0
Save
0

Deciphering the diversity and sequence of extracellular matrix and cellular spatial patterns in lung adenocarcinoma using topological data analysis

Iris Yoon et al.Jan 7, 2024
Abstract Extracellular matrix (ECM) organization influences cancer development and progression. It modulates the invasion of cancer cells and can hinder the access of immune cells to cancer cells. Effective quantification of ECM architecture and its relationship to the position of different cell types is, therefore, important when investigating the role of ECM in cancer development. Using topological data analysis (TDA), particularly persistent homology and Dowker persistent homology, we develop a novel analysis pipeline for quantifying ECM architecture, spatial patterns of cell positions, and the spatial relationships between distinct constituents of the tumour microenvironment. We apply the pipeline to 44 surgical specimens of lung adenocarcinoma from the lung TRACERx study stained with picrosirius red and haematoxylin. We show that persistent homology effectively encodes the architectural features of the tumour microenvironment. Inference using pseudo-time analysis and spatial mapping to centimetre scale tissues suggests a gradual and progressive route of change in ECM architecture, with two different end states. Dowker persistent homology enables the analysis of spatial relationship between any pair of constituents of the tumour microenvironment, such as ECM, cancer cells, and leukocytes. We use Dowker persistent homology to quantify the spatial segregation of cancer and immune cells over different length scales. A combined analysis of both topological and non-topological features of the tumour microenvironment indicates that progressive changes in the ECM are linked to increased immune exclusion and reduced oxidative metabolism.
0
Citation1
0
Save
0

Nanog fluctuations in ES cells highlight the problem of measurement in cell biology

R Smith et al.Jun 28, 2016
A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate stochastically in individual embryonic stem (ES) cells. By transiently priming cells for commitment to different lineages, these fluctuations are thought to be important to the maintenance of, and exit from, pluripotency. However, since temporal changes in intracellular protein abundances cannot be measured directly in live cells, these fluctuations are typically assessed using genetically engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression. Here, using a combination of mathematical modeling and experiment, we show that there are unforeseen ways in which widely used reporter strategies can systemically disturb the dynamics they are intended to monitor, sometimes giving profoundly misleading results. In the case of Nanog we show how genetic reporters can compromise the behavior of important pluripotency-sustaining positive feedback loops, and induce a bifurcation in the underlying dynamics that gives rise to heterogeneous Nanog expression patterns in reporter cell lines that are not representative of the wild-type. These findings help explain the range of published observations of Nanog variability and highlight a fundamental measurement problem in cell biology.
1

Quantification of vascular networks in photoacoustic mesoscopy

Emma Brown et al.Nov 22, 2021
ABSTRACT Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature and has the potential to assess prognosis and therapeutic response. Currently, evaluating vasculature using mesoscopic PAI involves visual or semi-quantitative 2D measurements, which fail to capture 3D vessel network complexity, and lack robust ground truths for assessment of segmentation accuracy. Here, we developed an in silico , phantom, in vivo , and ex vivo -validated end-to-end framework to quantify 3D vascular networks captured using mesoscopic PAI. We applied our framework to evaluate the capacity of rule-based and machine learning-based segmentation methods, with or without vesselness image filtering, to preserve blood volume and network structure by employing topological data analysis. We first assessed segmentation performance against ground truth data of in silico synthetic vasculatures and a photoacoustic string phantom. Our results indicate that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Next, we applied our framework to breast cancer patient-derived xenografts (PDXs), with corresponding ex vivo immunohistochemistry. We demonstrated that the above segmentation methods can reliably delineate the vasculature of 2 breast PDX models from mesoscopic PA images. Our results underscore the importance of evaluating the choice of segmentation method when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo .
0

Relational Persistent Homology for Multispecies Data with Application to the Tumor Microenvironment

Bernadette Stolz et al.Sep 17, 2024
Abstract Topological data analysis (TDA) is an active field of mathematics for quantifying shape in complex data. Standard methods in TDA such as persistent homology (PH) are typically focused on the analysis of data consisting of a single entity (e.g., cells or molecular species). However, state-of-the-art data collection techniques now generate exquisitely detailed multispecies data, prompting a need for methods that can examine and quantify the relations among them. Such heterogeneous data types arise in many contexts, ranging from biomedical imaging, geospatial analysis, to species ecology. Here, we propose two methods for encoding spatial relations among different data types that are based on Dowker complexes and Witness complexes. We apply the methods to synthetic multispecies data of a tumor microenvironment and analyze topological features that capture relations between different cell types, e.g., blood vessels, macrophages, tumor cells, and necrotic cells. We demonstrate that relational topological features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. The methods provide a quantitative perspective on the relational analysis of multispecies spatial data, overcome the limits of traditional PH, and are readily computable.