SN
Sunil Narwal
Author with expertise in Malaria
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
2
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A novel Plasmodium berghei protein S14 is essential for sporozoite gliding motility and infectivity

Ankit Ghosh et al.Jun 1, 2024
Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.
0
Citation1
0
Save
1

A novel glideosome-associated protein S14 coordinates sporozoite gliding motility and infectivity in mosquito and mammalian hosts

Ankit Ghosh et al.Aug 30, 2023
Abstract Plasmodium sporozoites are the infective forms of the malaria parasite in the vertebrate host. Gliding motility allows sporozoites to migrate and invade the salivary gland and hepatocytes. Invasion is powered by an actin-myosin motor complex linked to glideosome. However, the gliding complex and the role of several glideosome-associated proteins (GAPs) are poorly understood. In silico analysis of a novel protein, S14, which is uniquely upregulated in salivary gland sporozoites, suggested its association with glideosome-associated proteins. We confirmed S14 expression in sporozoites using real-time PCR. Further, the S14 gene was endogenously tagged with 3XHA-mCherry to study expression and localization. We found its expression and localization on the inner membrane of sporozoites. By targeted gene deletion, we demonstrate that S14 is essential for sporozoite gliding motility, salivary gland, and hepatocyte invasion. The gliding and invasion-deficient S14 KO sporozoites showed normal expression and organization of IMC and surface proteins. Using in silico and the yeast two-hybrid system, we showed the interaction of S14 with the glideosome-associated proteins GAP45 and MTIP. Together, our data show that S14 is a glideosome-associated protein and plays an essential role in sporozoite gliding motility, which is critical for the invasion of the salivary gland, hepatocyte, and malaria transmission.
0

Inhibitors of malaria parasite cyclic nucleotide phosphodiesterases block asexual blood-stage development and mosquito transmission

Paula Gómez et al.Dec 6, 2024
Cyclic nucleotide–dependent phosphodiesterases (PDEs) play essential roles in regulating the malaria parasite life cycle, suggesting that they may be promising antimalarial drug targets. PDE inhibitors are used safely to treat a range of noninfectious human disorders. Here, we report three subseries of fast-acting and potent Plasmodium falciparum PDEβ inhibitors that block asexual blood-stage parasite development and that are also active against human clinical isolates. Two of the inhibitor subseries also have potent transmission-blocking activity by targeting PDEs expressed during sexual parasite development. In vitro drug selection experiments generated parasites with moderately reduced susceptibility to the inhibitors. Whole-genome sequencing of these parasites detected no mutations in PDEβ but rather mutations in downstream effectors: either the catalytic or regulatory subunits of cyclic adenosine monophosphate–dependent protein kinase (PKA) or in the 3-phosphoinositide-dependent protein kinase that is required for PKA activation. Several properties of these P. falciparum PDE inhibitor series make them attractive for further progression through the antimalarial drug discovery pipeline.
0

A novel micronemal protein, Scot1, is essential for apicoplast biogenesis and liver stage development in Plasmodium berghei

Ankit Ghosh et al.Apr 24, 2024
Plasmodium sporozoites invade hepatocytes, transform into liver stages, and replicate into thousands of merozoites that infect erythrocytes and cause malaria. Proteins secreted from micronemes play an essential role in hepatocyte invasion, and unneeded micronemes are subsequently discarded for replication. The liver-stage parasites are potent immunogens that prevent malarial infection. Late liver stage-arresting genetically attenuated parasites (GAPs) exhibit greater protective efficacy than early GAP. However, the number of late liver-stage GAPs for generating GAPs with multiple gene deletions is limited. Here, we identified Scot1 (Sporozoite Conserved Orthologous Transcript 1), which was previously shown to be upregulated in sporozoites, and by endogenous tagging with mCherry, we demonstrated that it is expressed in the sporozoite and liver stages in micronemes. Using targeted gene deletion in Plasmodium berghei, we showed that Scot1 is essential for late liver-stage development. Scot1 KO sporozoites grew normally into liver stages but failed to initiate blood-stage infection in mice due to impaired apicoplast biogenesis and merozoite formation. Bioinformatic studies suggested that Scot1 is a metal/small molecule carrier protein. Remarkably, supplementation with metals in the culture of infected Scot1 KO cells did not rescue their phenotype. Immunization with Scot1 KO sporozoites in C57BL/6 mice confers protection against a malaria challenge via infection. These proof-of-concept studies will enable the generation of P. falciparum Scot1 mutants that could be exploited to generate GAP malaria vaccines.