SM
Shruthi Magesh
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
0
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantifying point-mutations in shotgun metagenomic data

Shruthi Magesh et al.Oct 11, 2018
J
V
S
Metagenomics has emerged as a central technique for studying the structure and function of microbial communities. Often the functional analysis is restricted to classification into broad functional categories. However, important phenotypic differences, such as resistance to antibiotics, are often the result of just one or a few point mutations in otherwise identical sequences. Bioinformatic methods for metagenomic analysis have generally been poor at accounting for this fact, resulting in a somewhat limited picture of important aspects of microbial communities. Here, we address this problem by providing a software tool called Mumame, which can distinguish between wildtype and mutated sequences in shotgun metagenomic data and quantify their relative abundances. We demonstrate the utility of the tool by quantifying antibiotic resistance mutations in several publicly available metagenomic data sets. We also identified that sequencing depth is a key factor to detect rare mutations. Therefore, much larger numbers of sequences may be required for reliable detection of mutations than for most other applications of shotgun metagenomics. Mumame is freely available from http://microbiology.se/software/mumame
0

Surface colonization byFlavobacterium johnsoniaepromotes its survival in a model microbial community

Shruthi Magesh et al.Jan 5, 2024
+5
J
A
S
ABSTRACT Flavobacterium johnsoniae is a ubiquitous soil and rhizosphere bacterium, but despite its abundance, the factors contributing to its success in communities are poorly understood. Using a model microbial community, T he H itchhikers O f the Rhizosphere (THOR), we determined the effects of colonization on fitness of F. johnsoniae in the community. Insertion sequencing (INSeq), a massively parallel transposon mutant screen, on sterile sand identified 25 genes likely to be important for surface colonization. We constructed in-frame deletions of nine candidate genes predicted to be involved in cell membrane biogenesis, motility, signal transduction, and transport of amino acids and lipids. All mutants poorly colonized sand, glass, and polystyrene and produced less biofilm than the wild type, indicating the importance of the targeted genes in surface colonization. Eight of the nine colonization-defective mutants were also unable to form motile biofilms, or zorbs, thereby suggesting that the affected genes play a role in group movement and linking stationary and motile biofilm formation genetically. Furthermore, we showed that deletion of colonization genes in F. johnsoniae affected its behavior and survival in THOR on surfaces, suggesting that the same traits are required for success in a multispecies microbial community. Our results provide insight into the mechanisms of surface colonization by F. johnsoniae and form the basis for further understanding its ecology in the rhizosphere. IMPORTANCE Microbial communities direct key environmental processes through multispecies interactions. Understanding these interactions is vital for manipulating microbiomes to promote health in human, environmental, and agricultural systems. However, microbiome complexity can hinder our understanding of the underlying mechanisms in microbial community interactions. As a first step towards unraveling these interactions, we explored the role of surface colonization in microbial community interactions using THOR, a genetically tractable model community of three bacterial species, Flavobacterium johnsoniae , Pseudomonas koreensis, and Bacillus cereus. We identified F. johnsoniae genes important for surface colonization in solitary conditions and in the THOR community. Understanding the mechanisms that promote success of bacteria in microbial communities brings us closer to targeted manipulations to achieve outcomes that benefit agriculture, the environment, and human health.
0

Co-zorbs: Motile, multispecies biofilms aid transport of diverse bacterial species

Shruthi Magesh et al.Aug 29, 2024
+5
N
J
S
Abstract Biofilms are three-dimensional structures containing one or more bacterial species embedded in extracellular polymeric substances. Although most biofilms are stationary, Flavobacterium johnsoniae forms a motile spherical biofilm called a zorb, which is propelled by its base cells and contains a polysaccharide core. Here, we report formation of spatially organized, motile, multispecies biofilms, designated “co-zorbs,” that are distinguished by a core-shell structure. F. johnsoniae forms zorbs whose cells collect other bacterial species and transport them to the zorb core, forming a co-zorb. Live imaging revealed that co-zorbs also form in zebrafish, thereby demonstrating a new type of bacterial movement in vivo. This discovery opens new avenues for understanding community behaviors, the role of biofilms in bulk bacterial transport, and collective strategies for microbial success in various environments. Significance Statement This paper reports the discovery of co-zorbs, which are spherical aggregates of bacteria that move and transport other bacteria. Zorbs move toward other bacteria and collect them in a manner reminiscent of phagocytes. Once inside the zorb, the new species form a striking, organized core. The discovery of co-zorbs introduces an entirely new type of bacterial movement and transport involving cooperation among bacterial species. Co-zorbs have potential for engineering microbial systems for biotechnology applications and for managing spread of bacterial pathogens in their hosts.