HA
Hashim Ali
Author with expertise in Gastrointestinal Viral Infections and Vaccines Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
1,091
h-index:
17
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs

Khatia Gabisonia et al.May 1, 2019
+16
G
G
K
Prompt coronary catheterization and revascularization have markedly improved the outcomes of myocardial infarction, but have also resulted in a growing number of surviving patients with permanent structural damage of the heart, which frequently leads to heart failure. There is an unmet clinical need for treatments for this condition1, particularly given the inability of cardiomyocytes to replicate and thereby regenerate the lost contractile tissue2. Here we show that expression of human microRNA-199a in infarcted pig hearts can stimulate cardiac repair. One month after myocardial infarction and delivery of this microRNA through an adeno-associated viral vector, treated animals showed marked improvements in both global and regional contractility, increased muscle mass and reduced scar size. These functional and morphological findings correlated with cardiomyocyte de-differentiation and proliferation. However, subsequent persistent and uncontrolled expression of the microRNA resulted in sudden arrhythmic death of most of the treated pigs. Such events were concurrent with myocardial infiltration of proliferating cells displaying a poorly differentiated myoblastic phenotype. These results show that achieving cardiac repair through the stimulation of endogenous cardiomyocyte proliferation is attainable in large mammals, however dosage of this therapy needs to be tightly controlled. MicroRNAs delivered by adeno-associated viral vectors improve global and regional contractility, increase muscle mass and reduce scar size in a porcine model of myocardial infarction.
0

Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia

Luca Braga et al.Apr 7, 2021
+17
W
A
L
COVID-19 is a disease with unique characteristics that include lung thrombosis1, frequent diarrhoea2, abnormal activation of the inflammatory response3 and rapid deterioration of lung function consistent with alveolar oedema4. The pathological substrate for these findings remains unknown. Here we show that the lungs of patients with COVID-19 contain infected pneumocytes with abnormal morphology and frequent multinucleation. The generation of these syncytia results from activation of the SARS-CoV-2 spike protein at the cell plasma membrane level. On the basis of these observations, we performed two high-content microscopy-based screenings with more than 3,000 approved drugs to search for inhibitors of spike-driven syncytia. We converged on the identification of 83 drugs that inhibited spike-mediated cell fusion, several of which belonged to defined pharmacological classes. We focused our attention on effective drugs that also protected against virus replication and associated cytopathicity. One of the most effective molecules was the antihelminthic drug niclosamide, which markedly blunted calcium oscillations and membrane conductance in spike-expressing cells by suppressing the activity of TMEM16F (also known as anoctamin 6), a calcium-activated ion channel and scramblase that is responsible for exposure of phosphatidylserine on the cell surface. These findings suggest a potential mechanism for COVID-19 disease pathogenesis and support the repurposing of niclosamide for therapy. Lungs from patients who died from COVID-19 show atypical fused cells, the formation of which is mediated by the SARS-CoV-2 spike protein, and drugs that inhibit TMEM16F can prevent spike-induced syncytia formation.
0
Paper
Citation361
0
Save
0

Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology

Rossana Bussani et al.Nov 1, 2020
+10
L
E
R
BackgroundCOVID-19 is a deadly pulmonary disease with peculiar characteristics, which include variable clinical course and thrombophilia. A thorough understanding of the pathological correlates of the disease is still missing.MethodsHere we report the systematic analysis of 41 consecutive post-mortem samples from individuals who died of COVID-19. Histological analysis is complemented by immunohistochemistry for cellular and viral antigens and the detection of viral genomes by in situ RNA hybridization.FindingsCOVID-19 is characterized by extensive alveolar damage (41/41 of patients) and thrombosis of the lung micro- and macro-vasculature (29/41, 71%). Thrombi were in different stages of organization, consistent with their local origin. Pneumocytes and endothelial cells contained viral RNA even at the later stages of the disease. An additional feature was the common presence of a large number of dysmorphic pneumocytes, often forming syncytial elements (36/41, 87%). Despite occasional detection of virus-positive cells, no overt signs of viral infection were detected in other organs, which showed non-specific alterations.InterpretationCOVID-19 is a unique disease characterized by extensive lung thrombosis, long-term persistence of viral RNA in pneumocytes and endothelial cells, along with the presence of infected cell syncytia. Several of COVID-19 features might be consequent to the persistence of virus-infected cells for the duration of the disease.FundingThis work was supported by a King's Together Rapid COVID-19 Call grant from King's College London. MG is supported by the European Research Council (ERC) Advanced Grant 787971 "CuRE" and by Programme Grant RG/19/11/34633 from the British Heart Foundation.
0
Citation340
0
Save
144

SARS-CoV-2 Spike protein activates TMEM16F-mediated platelet pro-coagulant activity

Ambra Cappelletto et al.Dec 15, 2021
+10
M
H
A
ABSTRACT Background Thrombosis of the lung micro-vasculature is a characteristic of COVID-19 disease, which is observed in large excess compared to other forms of acute respiratory distress syndrome and thus suggests a trigger for thrombosis endogenous to the lung. Our recent work has shown that the SARS-CoV-2 Spike protein activates the cellular TMEM16F chloride channel and scramblase. Through a screening on >3,000 FDA/EMA approved drugs, we identified Niclosamide and Clofazimine as the most effective molecules at inhibiting this activity. As TMEM16F plays an important role in the stimulation of the pro-coagulant activity of platelets, and considering that platelet abnormalities are common in COVID-19 patients, we investigated whether Spike directly affects platelet activation and pro-thrombotic function and tested the effect of Niclosamide and Clofazimine on these processes. Methods We produced SARS-CoV-2 Spike or VSV-G protein-pseudotyped virions, or generated cells expressing Spike on their plasma membrane, and tested their effects on platelet adhesion (fluorescence), aggregation (absorbance), exposure of phosphatidylserine (flow cytometry for annexin V binding), calcium flux (flow cytometry for fluo-4 AM), and clot formation and retraction. These experiments were also conducted in the presence of the TMEM16F activity inhibitors Niclosamide and Clofazimine. Results Here we show that exposure to SARS-CoV-2 Spike promotes platelet activation, adhesion and spreading, both when present on the envelope of virions or upon expression on the plasma membrane of cells. Spike was effective both as a sole agonist or by enhancing the effect of known platelet activators, such as collagen and collagen-related peptide. In particular, Spike exerted a noticeable effect on the procoagulant phenotype of platelets, by enhancing calcium flux, phosphatidylserine externalisation, and thrombin generation. Eventually, this resulted in a striking increase in thrombin-induced clot formation and retraction. Both Niclosamide and Clofazimine almost abolished this Spike-induced pro-coagulant response. Conclusions Together, these findings provide a pathogenic mechanism to explain thrombosis associated to COVID-19 lung disease, by which Spike present in SARS-CoV-2 virions or exposed on the surface of infected cells, leads to local platelet stimulation and subsequent activation of the coagulation cascade. As platelet TMEM16F is central in this process, these findings reinforce the rationale of repurposing drugs targeting this protein, such as Niclosamide, for COVID-19 therapy.
144
Citation3
0
Save
4

Attenuation hotspots in neurotropic human astroviruses

Hashim Ali et al.Sep 6, 2022
+7
A
A
H
Abstract During the last decade, the detection of neurotropic astroviruses has increased dramatically. The MLB genogroup of astroviruses represents a genetically distinct group of zoonotic astroviruses associated with gastroenteritis and severe neurological complications in young children, the immunocompromised and the elderly. Using different virus evolution approaches, we identified dispensable regions in the 3′ end of the capsid-coding region responsible for attenuation of MLB astroviruses in susceptible cell lines. To create recombinant viruses with identified deletions, MLB reverse genetics and replicon systems were developed. Recombinant truncated MLB viruses had wild type-like or enhanced growth and replication properties in permissive cells but were strongly attenuated in iPSC-derived neuronal cultures confirming the location of neurotropism determinants. This approach can be used for the development of vaccine candidates using attenuated astroviruses that infect humans, livestock animals and poultry.
4
Citation1
0
Save
0

The astrovirus N-terminal nonstructural protein anchors replication complexes to the perinuclear ER membranes

Hashim Ali et al.Jan 9, 2024
+2
J
D
H
Abstract An essential aspect of viral replication is the anchoring of the replication complex (RC) to cellular membranes. Positive-sense RNA viruses employ diverse strategies, including co-translational membrane targeting through signal peptides and co-opting cellular membrane trafficking components. Often, N-terminal nonstructural proteins play a crucial role in linking the RC to membranes, facilitating the early association of the replication machinery. Astroviruses utilize a polyprotein strategy to synthesize nonstructural proteins, relying on subsequent processing to form replication-competent complexes. In this study, we provide evidence for the perinuclear ER membrane association of RCs in five distinct human astrovirus strains. Using tagged recombinant classical human astrovirus 1 and neurotropic MLB2 strains, we establish that the N-terminal domain guides the ER membrane association. Through mutational analysis of the N-terminal domain in replicon and reverse genetics systems, we identified di-arginine motifs responsible for the perinuclear ER retention and formation of functional RCs. Our findings highlight the intricate virus-ER interaction mechanism employed by astroviruses, potentially leading to the development of novel antiviral intervention strategies. Author Summary Human astroviruses are a significant cause of acute gastroenteritis, accounting for up to 9% of cases in young children. Immunocompromised individuals and infants experience more critical symptoms, such as severe and persistent diarrhea, as well as sporadic systemic and even fatal diseases. To date, no drugs have been developed to protect against astrovirus infection. Our study provides the first evidence that the integrity of the N-terminal domain of nsP1a is essential for establishing early replication. Central to this process, the di-arginine motifs in the N-terminal domain are responsible for ER retention, the formation of functional replication complexes, and viral replication. Therefore, selectively targeting N-terminal domain-mediated ER retention could be a promising therapeutic strategy to effectively control astrovirus infection.
0

The astrovirus N-terminal nonstructural protein anchors replication complexes to the perinuclear ER membranes

Hashim Ali et al.Jul 15, 2024
+3
J
D
H
An essential aspect of positive-sense RNA virus replication is anchoring the replication complex (RC) to cellular membranes. Positive-sense RNA viruses employ diverse strategies, including co-translational membrane targeting through signal peptides and co-opting cellular membrane trafficking components. Often, N-terminal nonstructural proteins play a crucial role in linking the RC to membranes, facilitating the early association of the replication machinery. Astroviruses utilize a polyprotein strategy to synthesize nonstructural proteins, relying on subsequent processing to form replication-competent complexes. This study provides evidence for the perinuclear ER membrane association of RCs in five distinct human astrovirus strains. Using tagged recombinant classical human astrovirus 1 and neurotropic MLB2 strains, we establish that the N-terminal domain guides the ER membrane association. We identified di-arginine motifs responsible for the perinuclear ER retention and formation of functional RCs through mutational analysis of the N-terminal domain in replicon and reverse genetics systems. In addition, we demonstrate the association of key components of the astrovirus replication complex: double-stranded RNA, RNA-dependent RNA polymerase, protease, and N-terminal protein. Our findings highlight the intricate virus-ER interaction mechanism employed by astroviruses, potentially leading to the development of novel antiviral intervention strategies.