WL
Weiwei Lin
Author with expertise in Apelin Signaling and Physiology
Center for Systems Biology, Boston University, Sichuan University
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1
h-index:
21
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

A multi-tiered map of EMT defines major transition points and identifies vulnerabilities

Indranil Paul et al.Jun 2, 2021
+20
A
D
I
Summary Epithelial to mesenchymal transition (EMT) is a complex cellular program proceeding through a hybrid E/M state linked to cancer-associated stemness, migration and chemoresistance. Deeper molecular understanding of this dynamic physiological landscape is needed to define events which regulate the transition and entry into and exit from the E/M state. Here, we quantified >60,000 molecules across ten time points and twelve omic layers in human mammary epithelial cells undergoing TGFβ-induced EMT. Deep proteomic profiles of whole cells, nuclei, extracellular vesicles, secretome, membrane and phosphoproteome defined state-specific signatures and major transition points. Parallel metabolomics showed metabolic reprogramming preceded changes in other layers, while single-cell RNA sequencing identified transcription factors controlling entry into E/M. Covariance analysis exposed unexpected discordance between the molecular layers. Integrative causal modeling revealed co-dependencies governing entry into E/M that were verified experimentally using combinatorial inhibition. Overall, this dataset provides an unprecedented resource on TGFβ signaling, EMT and cancer.
0

Beyond Glycolysis: Aldolase A is a Novel Effector in Reelin Mediated Dendritic Development

Gavin Lagani et al.May 27, 2024
+5
S
W
G
Abstract Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with non-canonical receptors and unidentified co-receptors; however, the effects of which are less understood. Using high-throughput tandem mass tag LC-MS/MS-based proteomics and gene set enrichment analysis, we identified both shared and unique intracellular pathways activated by Reelin through its canonical and non-canonical signaling in primary murine neurons during dendritic growth and arborization. We observed pathway crosstalk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the non-canonical Reelin pathway including protein translation, mRNA metabolic process and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for actin remodeling and dendritic development. Significance Reelin is an extracellular glycoprotein and exerts its function primarily by binding to the canonical lipoprotein receptors Apoer2 and Vldlr. Reelin is best known for its role in neuronal migration during prenatal brain development. Reelin also signals through a non-canonical pathway outside of Apoer2/Vldlr; however, these receptors and signal transduction pathways are less defined. Here, we examined Reelin’s role during dendritic outgrowth in primary murine neurons and identified shared and distinct pathways activated by canonical and non-canonical Reelin signaling. We also found aldolase A as a novel effector of Reelin signaling, that functions independently of its known metabolic role, highlighting Reelin’s influence on actin dynamics and neuronal structure and growth.
0

PANAMA enabled high sensitivity dual nanoflow LC/MS metabolomics and proteomics analysis

Weiwei Lin et al.Jun 3, 2024
+6
B
F
W
Summary High sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient to prevent nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on robust solid phase micro-extraction step for routine sample clean-up and bioactive molecule enrichment. Our method, termed PANAMA, improves compound resolution and detection sensitivity without compromising depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens including biofluids, cell line and tissue samples. It generates high quality, information rich metabolite-protein datasets while bypassing the need for specialized instrumentation. Motivation The ability to routinely, sensitively and reproducibly analyze both cellular proteins and metabolite mixtures from the same biospecimens can enhance the discovery of biomolecules associated with basic biochemical processes and pathobiological states. Yet existing mass spectrometry-based profiling methods rely on specialized protocols and duplicated instrumentation platforms, resulting in increased time, sample consumption and costs. We sought to generate an effective platform for both metabolomic and proteomic studies on the same samples by enabling nanoflow liquid chromatography for small molecules. The resulting approach was extensively optimized and benchmarked to provide in depth molecular coverage, along with improved chromatographic separations, sensitivity and reliability as compared to existing methods. The cost benefit ratio of PANAMA is substantial because the platform bypasses the need for specialized instrumentation stemming from incompatible procedures.
0

A mutation in Hnrnph1 that decreases methamphetamine-induced reinforcement, reward, and dopamine release and increases synaptosomal hnRNP H and mitochondrial proteins

Qiu Ruan et al.May 7, 2020
+21
B
N
Q
Individual variation in the addiction liability of amphetamines has a heritable genetic component. We previously identified Hnrnph1 (heterogeneous nuclear ribonucleoprotein H1) as a quantitative trait gene underlying decreased methamphetamine-induced locomotor activity in mice. Here, mice (both male and female) with a heterozygous mutation in the first coding exon of Hnrnph1 (H1+/-) showed reduced methamphetamine reinforcement and intake and dose-dependent changes in methamphetamine reward as measured via conditioned place preference. Furthermore, H1+/- mice showed a robust decrease in methamphetamine-induced dopamine release in the nucleus accumbens with no change in baseline extracellular dopamine, striatal whole tissue dopamine, dopamine transporter protein, or dopamine uptake. Immunohistochemical and immunoblot staining of midbrain dopaminergic neurons and their forebrain projections for tyrosine hydroxylase did not reveal any major changes in staining intensity, cell number, or in the number of forebrain puncta. Surprisingly, there was a two-fold increase in hnRNP H protein in the striatal synaptosome of H1+/- mice with no change in whole tissue levels. To gain insight into the molecular mechanisms linking increased synaptic hnRNP H with decreased methamphetamine-induced dopamine release and behaviors, synaptosomal proteomic analysis identified an increased baseline abundance of several mitochondrial complex I and V proteins that rapidly decreased at 30 min post-methamphetamine administration in H1+/- mice. In contrast, the much lower level of basal synaptosomal mitochondrial proteins in wild-type mice showed a rapid increase in response to methamphetamine. We conclude that H1+/- decreases methamphetamine–induced dopamine release, reward, and reinforcement and induces dynamic changes in basal and methamphetamine-induced synaptic mitochondrial function.SIGNIFICANCE STATEMENT Methamphetamine dependence is a significant public health concern with no FDA-approved treatment. We discovered a role for the RNA binding protein hnRNP H in methamphetamine reward and reinforcement. Hnrnph1 mutation also blunted methamphetamine-induced dopamine release in the nucleus accumbens – a key neurochemical event contributing to methamphetamine addiction liability. Finally, Hnrnph1 mutants showed a marked increase in basal level of synaptosomal hnRNP H and mitochondrial proteins that decreased in response to methamphetamine whereas wild-type mice showed a methamphetamine-induced increase in synaptosomal mitochondrial proteins. Thus, we identified a potential role for hnRNP H in basal and dynamic mitochondrial function that informs methamphetamine-induced cellular adaptations associated with reduced addiction liability.