NJ
Noah Jafferis
Author with expertise in Biological and Biomimetic Flight Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,393
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion

Yi Qi et al.Jan 26, 2010
The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.
0

Buzz-pollinating bees deliver thoracic vibrations to flowers through periodic biting

Charlie Woodrow et al.Aug 1, 2024
Pollinator behavior is vital to plant-pollinator interactions, affecting the acquisition of floral rewards, patterns of pollen transfer, and plant reproductive success. During buzz pollination, bees produce vibrations with their indirect flight muscles to extract pollen from tube-like flowers. Vibrations can be transmitted to the flower via the mandibles, abdomen, legs, or thorax directly. Vibration amplitude at the flower determines the rate of pollen release and should vary with the coupling of bee and flower. This coupling often occurs through anther biting, but no studies have quantified how biting affects flower vibration. Here, we used high-speed filmography to investigate how flower vibration amplitude changes during biting in Bombus terrestris visiting two species of buzz-pollinated flowering plants: Solanum dulcamara and Solanum rostratum (Solanaceae). We found that floral buzzing drives head vibrations up to 3 times greater than those of the thorax, which doubles the vibration amplitude of the anther during biting compared with indirect vibration transmission when not biting. However, the efficiency of this vibration transmission depends on the angle at which the bee bites the anther. Variation in transmission mechanisms, combined with the diversity of vibrations across bee species, yields a rich assortment of potential strategies that bees could employ to access rewards from buzz-pollinated flowers.
0
Paper
Citation1
0
Save
0

Biomechanical properties of defence vibrations produced by bees

Mario Vallejo‐Marín et al.Jan 15, 2024
Abstract Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence, and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration’s acceleration amplitude are important in some behaviours, e.g., during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. Here, we conduct the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focus on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland, and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes. Summary statement Analyses across 65 bee taxa in three continents indicates that body size is a major determinant of the acceleration amplitude but not the oscillation frequency of non-flight thoracic vibrations.