PP
Päivi Pihlajamaa
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
230
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

FoxA1 Specifies Unique Androgen and Glucocorticoid Receptor Binding Events in Prostate Cancer Cells

Biswajyoti Sahu et al.Dec 27, 2012
Abstract The forkhead protein FoxA1 has functions other than a pioneer factor, in that its depletion brings about a significant redistribution in the androgen receptor (AR) and glucocorticoid receptor (GR) cistromes. In this study, we found a novel function for FoxA1 in defining the cell-type specificity of AR- and GR-binding events in a distinct fashion, namely, for AR in LNCaP-1F5 cells and for GR in VCaP cells. We also found different, cell-type and receptor-specific compilations of cis-elements enriched adjacent to the AR- and GR-binding sites. The AR pathway is central in prostate cancer biology, but the role of GR is poorly known. We find that AR and GR cistromes and transcription programs exhibit significant overlap, and GR regulates a large number of genes considered to be AR pathway-specific. This raises questions about the role of GR in maintaining the AR pathway under androgen-deprived conditions in castration-resistant prostate cancer patients. However, in the presence of androgen, ligand-occupied GR acts as a partial antiandrogen and attenuates the AR-dependent transcription program. Cancer Res; 73(5); 1570–80. ©2012 AACR.
0
Citation220
0
Save
1

Sequence determinants of human gene regulatory elements

Biswajyoti Sahu et al.Mar 18, 2021
Abstract DNA determines where and when genes are expressed, but the full set of sequence determinants that control gene expression is not known. To obtain a global and unbiased view of the relative importance of different sequence determinants in gene expression, we measured transcriptional activity of DNA sequences that are in aggregate ∼100 times longer than the human genome in three different cell types. We show that enhancers can be classified to three main types: classical enhancers 1 , closed chromatin enhancers and chromatin-dependent enhancers, which act via different mechanisms and differ in motif content. Transcription factors (TFs) act generally in an additive manner with weak grammar, with classical enhancers increasing expression from promoters by a mechanism that does not involve specific TF-TF interactions. Few TFs are strongly active in a cell, with most activities similar between cell types. Chromatin-dependent enhancers are enriched in forkhead motifs, whereas classical enhancers contain motifs for TFs with strong transactivator domains such as ETS and bZIP; these motifs are also found at transcription start site (TSS)-proximal positions. However, some TFs, such as NRF1 only activate transcription when placed close to the TSS, and others such as YY1 display positional preference with respect to the TSS. TFs can thus be classified into four non-exclusive subtypes based on their transcriptional activity: chromatin opening, enhancing, promoting and TSS determining factors – consistent with the view that the binding motif is the only atomic unit of gene expression.
1
Citation6
0
Save
0

Cancer cell type-specific derepression of transposable elements by inhibition of chromatin modifier enzymes

Divyesh Patel et al.Jan 16, 2024
Abstract The combination of immunotherapy and epigenetic therapy is emerging as a promising approach for cancer therapy. Epigenetic therapy can induce derepression of transposable elements (TEs) that play a major role in activation of immune response against cancer cells. However, the molecular mechanism of TE regulation by distinct chromatin modifier enzymes (CME) and in the context of p53 is still elusive. Here, we used epigenetic drugs to inhibit distinct CMEs in p53 wild-type and p53-mutant colorectal and esophageal cancer cells. We show that distinct TEs subfamilies are derepressed by inhibition of different CMEs in a cell-type specific manner with loss of p53 resulting in stronger TE derepression. We show that KAP1, a known repressor of TEs, associates with stronger derepression of specific TE subfamilies such as LTR12C, indicating that KAP1 also has an activating role in TE regulation in cancer cells upon co-inhibition of DNMT and HDAC. Co-inhibition of DNMT and HDAC activates immune response by inducing inverted repeat Alu expression, reducing ADAR1-mediated Alu RNA editing, and inducing cell type-specific TE-chimeric transcript expression. Collectively, our study demonstrates that inhibition of different CMEs results in derepression of distinct TEs in cell type-specific manner and by utilizing distinct mechanistic pathways, providing insights for epigenetic therapies that could selectively enhance anti-tumor immunity in distinct cancer types.
0
Citation1
0
Save
1

Identifying critical transcriptional targets of the MYC oncogene using a novel competitive precision genome editing (CGE) assay

Päivi Pihlajamaa et al.Sep 17, 2021
Abstract MYC is an oncogenic transcription factor that controls major pathways promoting cell growth and proliferation. MYC has been implicated in the regulation of large number of genes, but the exact target genes responsible for its proliferative effects are still not known. Here, we use a novel competitive genome editing (CGE) assay for studying the functional consequence of precise mutations of MYC binding sites on cell proliferation. The CGE method is based on precision genome editing, where a CRISPR/Cas9-induced DNA break is repaired using a template that either reconstitutes the original feature or introduces an altered sequence. Both types of repair templates harbor sequence tags that allow direct comparison between cells that carry original and mutant features and generate a large number of replicate cultures. The CGE method overcomes the limitations of CRISPR/Cas9-technology in analyzing the effect of genotype on phenotype, namely the difficulty of cutting DNA exactly at the intended site, and the decreased cell proliferation caused by the DNA cuts themselves. Importantly, it provides a powerful method for studying subtle effects elicited by mutation of individual transcription factor binding sites. We show here that E-box mutations at several MYC target gene promoters resulted in reduced cellular fitness, demonstrating a direct correlation between MYC-regulated cellular processes and MYC binding and identifying important transcriptional targets responsible for its functions.
1
Citation1
0
Save
3

Lineage-specific oncogenes drive growth of major forms of human cancer using common downstream mechanisms

Otto Kauko et al.Sep 28, 2022
ABSTRACT Mutations in hundreds of genes have been associated with formation of human cancer, with different oncogenic lesions prevalent in different cancer types. Yet, the malignant phenotype is simple, characterized by unrestricted growth of cells that invade neighboring healthy tissue and in many cases metastasize to distant organs. One possible hypothesis explaining this dichotomy is that the cancer genes regulate a common set of target genes, which then function as master regulators of essential cancer phenotypes, such as growth, invasion and metastasis. To identify mechanisms that drive the most fundamental feature shared by all tumors – unrestricted cell proliferation – we used a multiomic approach to identify common transcriptional and posttranslational targets of major oncogenic pathways active in different cancer types, and combined this analysis with known regulators of the cell cycle. We identified translation and ribosome biogenesis as common targets of both transcriptional and posttranslational oncogenic pathways. By combining proteomic analysis of clinical samples with functional studies of cell cultures, we also establish NOLC1 as a key node whose convergent regulation both at transcriptional and posttranslational level is critical for tumor cell proliferation. Our results indicate that lineage-specific oncogenic pathways commonly regulate the same set of targets important for growth control, revealing novel key downstream nodes that could be targeted for cancer therapy or chemoprevention.