YB
Yongho Bae
Author with expertise in Integrin Signaling in Inflammation and Cancer
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
189
h-index:
18
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Machine learning reveals heterogeneous responses to FAK, Rac, Rho, and Cdc42 inhibition on vascular smooth muscle cell spheroid formation and morphology

Kalyan Vaidyanathan et al.Jan 31, 2020
SUMMARY Atherosclerosis and vascular injury are characterized by neointima formation caused by the aberrant accumulation and proliferation of vascular smooth muscle cells (VSMCs) within the vessel wall. Understanding how to control VSMCs would advance the effort to treat vascular disease. However, the response to treatments aimed at VSMCs is often different among patients with the same disease condition, suggesting patient-specific heterogeneity in VSMCs. Here, we present an experimental and computational method called HETEROID (Heterogeneous Spheroid), which examines the heterogeneity of the responses to drug treatments at the single-spheroid level by combining a VSMC spheroid model and machine learning (ML) analysis. First, we established a VSMC spheroid model that mimics neointima formation induced by atherosclerosis and vascular injury. We found that FAK-Rac/Rho, but not Cdc42, pathways regulate the VSMC spheroid formation through N-cadherin. Then, to identify the morphological subpopulations of drug-perturbed spheroids, we used an ML framework that combines deep learning-based spheroid segmentation and morphological clustering analysis. Our ML approach reveals that FAK, Rac, Rho, and Cdc42 inhibitors differentially affect the spheroid morphology, suggesting there exist multiple distinct pathways governing VSMC spheroid formation. Overall, our HETEROID pipeline enables detailed quantitative characterization of morphological changes in neointima formation, that occurs in vivo, by single-spheroid analysis of various drug treatments.
0
Citation1
0
Save
0

Epigenetic Dynamics in Meniscus Cell Migration and its Zonal Dependency in Response to Inflammatory Conditions: Implications for Regeneration Strategies

Qian Zhang et al.Jul 23, 2024
Meniscus injuries pose significant challenges in clinical settings, primarily due to the intrinsic heterogeneity of the tissue and the limited efficacy of current treatments. Endogenous cell migration is crucial for the healing process, yet the regulatory mechanisms of meniscus cell migration and its zonal dependency within the meniscus are not fully understood. Thus, this study investigates the role of epigenetic mechanisms in governing meniscus cell migration under inflammatory conditions, with a focus on their implications for injury healing and regeneration. Here, we discovered that a proinflammatory cytokine, TNF-α treatment significantly impedes the migration speed of inner meniscus cells, while outer meniscus cells are unaffected, underscoring a zonal-dependent response within the meniscus. Our analysis identified distinct histone modification patterns and chromatin dynamics between inner and outer meniscus cells during migration, highlighting the necessity to consider these zonal-dependent properties in devising repair strategies. Specifically, we found that TNF-α differentially influences histone modifications, particularly H3K27me3, between the two cell types. Transcriptome analysis further revealed that TNF-α treatment induces substantial gene expression changes, with inner meniscus cells exhibiting more pronounced alterations than outer cells. Gene cluster analysis pointed to distinct responses in chromatin remodeling, extracellular matrix assembly, and wound healing processes between the zonal cell populations. Moreover, we identified potential therapeutic targets by employing existing epigenetic drugs, GSKJ4 (a histone demethylase inhibitor) and C646 (a histone acetyltransferase inhibitor), to successfully restore the migration speed of inner meniscus cells under inflammatory conditions. This highlights their potential utility in treating meniscus tear injuries. Overall, our findings elucidate the intricate interplay between epigenetic mechanisms and meniscus cell migration, along with its meniscus zonal dependency. This study provides insights into potential targets for enhancing meniscus repair and regeneration, which may lead to improved clinical outcomes for patients with meniscus injuries and osteoarthritis.
5

Survivin is a mechanosensitive cell cycle regulator in vascular smooth muscle cells

John Biber et al.Nov 10, 2022
SUMMARY Stiffened arteries are a pathology of atherosclerosis, hypertension, and coronary artery disease and a key risk factor for cardiovascular disease events. The increased stiffness of arteries triggers the hypermigration and hyperproliferation of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia and accelerated neointima formation, but the mechanism of this trigger is not known. Our analyses of whole-transcriptome microarray data sets from mouse VSMCs cultured on stiff hydrogels simulating arterial pathology and from injured mouse femoral arteries revealed 80 genes that were differentially regulated (74 upregulated and 6 downregulated) relative to expression in control VSMCs cultured on soft hydrogels and in uninjured femoral arteries. A functional enrichment analysis revealed that these stiffness-sensitive genes are linked to cell cycle progression and proliferation. Furthermore, we found that survivin, a member of the inhibitor of apoptosis protein family, mediates stiffness-sensitive cell cycling and proliferation in vivo and in vitro as determined by gene network and pathway analyses, RT-qPCR, and immunoblotting. The stiffness signal is mechanotransduced via FAK and Rac signaling to regulate survivin expression, establishing a regulatory pathway for how the stiffness of the cellular microenvironment affects VSMC behaviors. Our findings indicate that survivin is necessary for VSMC cycling and proliferation and regulates stiffness-responsive phenotypes.
0

Mechanosensitive Expression of Lamellipodin Governs Cell Cycle Progression and Intracellular Stiffness

Joseph Brazzo et al.Oct 31, 2020
SUMMARY Cells exhibit pathological behaviors in response to increased extracellular matrix (ECM) stiffness, including accelerated cell proliferation and migration [1–9], which are correlated with increased intracellular stiffness and tension [2, 3, 10–12]. The biomechanical signal transduction of ECM stiffness into relevant molecular signals and resultant cellular processes is mediated through multiple proteins associated with the actin cytoskeleton in lamellipodia [2, 3, 10, 11, 13]. However, the molecular mechanisms by which lamellipodial dynamics regulate cellular responses to ECM stiffening remain unclear. Previous work described that lamellipodin, a phosphoinositide- and actin filament-binding protein that is known mostly for controlling cell migration [14–21], promotes ECM stiffness-mediated early cell cycle progression [2], revealing a potential commonality between the mechanisms controlling stiffness-dependent cell migration and those controlling cell proliferation. However, i) whether and how ECM stiffness affects the levels of lamellipodin expression and ii) whether stiffness-mediated lamellipodin expression is required throughout cell cycle progression and for intracellular stiffness have not been explored. Here, we show that the levels of lamellipodin expression in cells are significantly increased by a stiff ECM and that this stiffness-mediated lamellipodin upregulation persistently stimulates cell cycle progression and intracellular stiffness throughout the cell cycle, from the early G1 phase to M phase. Finally, we show that both Rac activation and intracellular stiffening are required for the mechanosensitive induction of lamellipodin. More specifically, inhibiting Rac1 activation in cells on stiff ECM reduces the levels of lamellipodin expression, and this effect is reversed by the overexpression of activated Rac1 in cells on soft ECM. We thus propose that lamellipodin is a critical molecular lynchpin in the control of mechanosensitive cell cycle progression and intracellular stiffness.
1

Development of A Decellularized Meniscus Matrix-Based Nanofibrous Scaffold for Meniscus Tissue Engineering

Boao Xia et al.Dec 24, 2020
ABSTRACT The meniscus plays a critical role in knee mechanical function but is commonly injured given its central load bearing role. In the adult, meniscus repair is limited, given the low number of endogenous cells, the density of the matrix, and the limited vascularity. Menisci are fibrocartilaginous tissues composed of a micro-/nano-fibrous extracellular matrix (ECM) and a mixture of chondrocyte-like and fibroblast-like cells. Here, we developed a fibrous scaffold system that consists of bioactive components (decellularized meniscus ECM (dME) within a poly(e-caprolactone) material) fashioned into a biomimetic morphology (via electrospinning) to support and enhance meniscus cell function and matrix production. This work supports that the incorporation of dME into synthetic nanofibers increased hydrophilicity of the scaffold, leading to enhanced meniscus cell spreading, proliferation, and fibrochondrogenic gene expression. This work identifies a new biomimetic scaffold for therapeutic strategies to substitute or replace injured meniscus tissue. STATEMENT OF SIGNIFICANCE In this study, we show that a scaffold electrospun from a combination of synthetic materials and bovine decellularized meniscus ECM provides appropriate signals and a suitable template for meniscus fibrochondrocyte spreading, proliferation, and secretion of collagen and proteoglycans. Material characterization and in vitro cell studies support that this new bioactive material is susceptible to enzymatic digestion and supports meniscus-like tissue formation.
6

Survivin Regulates Intracellular Stiffness and Extracellular Matrix Production in Vascular Smooth Muscle Cells

Amanda Krajnik et al.Oct 24, 2022
ABSTRACT Vascular dysfunction is a common cause of cardiovascular diseases characterized by the narrowing and stiffening of arteries, such as atherosclerosis, restenosis, and hypertension. Arterial narrowing results from the aberrant proliferation of vascular smooth muscle cells (VSMCs) and their increased synthesis and deposition of extracellular matrix (ECM) proteins. These, in turn, are modulated by arterial stiffness, but the mechanism for this is not fully understood. We found that survivin (an inhibitor of apoptosis) is an important regulator of stiffness-mediated ECM synthesis and intracellular stiffness in VSMCs. Whole-transcriptome analysis and cell culture experiments showed that survivin expression is upregulated in injured femoral arteries in mice and in human VSMCs cultured on stiff fibronectin-coated hydrogels. Suppressed expression of survivin in human VSMCs and mouse embryonic fibroblasts decreased the stiffness-mediated expression of ECM components implicated in arterial stiffness, namely, collagen-I, fibronectin, and lysyl oxidase. By contrast, expression of these proteins was upregulated by the overexpression of survivin in human VSMCs cultured on soft hydrogels. Atomic force microscopy analysis showed that suppressed or enhanced expression of survivin decreases or increases intracellular stiffness, respectively. These findings suggest a novel mechanism by which survivin modulates arterial stiffness.
Load More