GC
Glenn Carrington
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Multiscale approach reveals the molecular architecture of the autoinhibited kinesin KIF5A

Glenn Carrington et al.Jan 18, 2024
Abstract Kinesin-1 is a microtubule motor that transports cellular cargo along microtubules. KIF5A is one of three kinesin-1 isoforms in humans, all of which are autoinhibited by an interaction between the motor and an IAK motif in the proximal region of the C-terminal tail. The C-terminal tail of KIF5A is ∼80 residues longer than the other two kinesin-1 isoforms (KIF5B and KIF5C) and it is unclear if it contributes to autoinhibition. Mutations in KIF5A cause neuronal diseases and could affect autoinhibition, as reported for a mutation that skips exon 27, altering its C-terminal sequence. Here, we combined negative-stain electron microscopy, crosslinking mass spectrometry (XL-MS) and AlphaFold2 structure prediction to determine the molecular architecture of the full-length autoinhibited KIF5A homodimer, in the absence of light chains. We show that KIF5A forms a compact, bent conformation, through a bend between coiled coils 2 and 3, around P687. XL-MS of WT KIF5A revealed extensive interactions between residues in the motor, between coiled-coil 1 and the motor, between coiled-coils 1 and 2, with coiled coils 3 and 4, and the proximal region of the C-terminal tail and the motor in the autoinhibited state, but not between the distal C-terminal region and the rest of the molecule. While negative stain electron microscopy of exon-27 KIF5A splice mutant showed the presence of autoinhibited molecules, XL-MS analysis suggested that its autoinhibited state is more labile. Our model offers a conceptual framework for understanding how mutations within the motor and stalk domain may affect motor activity.
10

Human light meromyosin mutations linked to skeletal myopathies disrupt the coiled coil structure and myosin head sequestration

Glenn Carrington et al.May 16, 2023
Abstract Myosin heavy chains encoded by MYH7 and MYH2 are among the most abundant proteins in human skeletal muscle. After decades of intense research using a wide range of biophysical and biological approaches, their functions have begun to be elucidated. Despite this, it remains unclear how mutations in these genes and resultant proteins disrupt myosin structure and function, inducing pathological states and skeletal myopathies termed myosinopathies. Here, we have analysed the effects of several common MYH7 and MYH2 mutations located in light meromyosin (LMM) using a broad range of approaches. We determined the secondary structure and filament forming capabilities of expressed and purified LMM constructs in vitro, performed in-silico modelling of LMM constructs, and evaluated the incorporation of eGFP-myosin heavy chain constructs into sarcomeres in cultured myotubes. Using muscle biopsies from patients, we applied Mant-ATP chase protocols to estimate the proportion of myosin heads that were super-relaxed, X-ray diffraction measurements to estimate myosin head order and myofibre mechanics to investigate contractile function. We found that human MYH7 and MYH2 LMM mutations commonly disrupt myosin coiled-coil structure and packing of filaments in vitro ; decrease the myosin super-relaxed state in vivo and increase the basal myosin ATP consumption; but are not associated with myofibre contractile deficits. Altogether, these findings indicate that the structural remodelling resulting from LMM mutations induces a pathogenic state in which formation of shutdown heads is impaired, thus increasing myosin head ATP demand in the filaments, rather than affecting contractility. These key findings will help in the design of future therapies for myosinopathies.
0

A comparison of fixation and immunofluorescence protocols for successful reproducibility and improved signal in human left ventricle cardiac tissue

Matthew Taper et al.Jun 10, 2024
Abstract Immunohistochemistry (IHC) and immunofluorescence (IF) are crucial techniques for studying cardiac physiology and disease. The accuracy of these techniques is dependent on various aspects of sample preparation and processing. However, standardised protocols for sample preparation of tissues, particularly for fresh‐frozen human left ventricle (LV) tissue, have yet to be established and could potentially lead to differences in staining and interpretation. Thus, this study aimed to optimise the reproducibility and quality of IF staining in fresh‐frozen human LV tissue by systematically investigating crucial aspects of the sample preparation process. To achieve this, we subjected fresh‐frozen human LV tissue to different fixation protocols, primary antibody incubation temperatures, antibody penetration reagents, and fluorescent probes. We found that neutral buffered formalin fixation reduced image artefacts and improved antibody specificity compared to both methanol and acetone fixation. Additionally, incubating primary antibodies at 37°C for 3 h improved fluorescence intensity compared to the commonly practised 4°C overnight incubation. Furthermore, we found that DeepLabel, an antibody penetration reagent, and smaller probes, such as fragmented antibodies and Affimers, improved the visualisation depth of cardiac structures. DeepLabel also improved antibody penetration in CUBIC cleared thick LV tissue fragments. Thus, our data underscores the importance of standardised protocols in IF staining and provides various means of improving staining quality. In addition to contributing to cardiac research by providing methodologies for IF, the findings and processes presented herein also establish a framework by which staining of other tissues may be optimised.