GM
Gerald Moore
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
15
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inhibitory interneurons distribute widely across the mouse thalamus and form ontogenetic spatial clusters

Polona Jager et al.May 28, 2019
+8
P
G
P
The proportion and distribution of local inhibitory neurons (interneurons) in the thalamus varies widely across mammals. This is reflected in the structure of thalamic local circuits, which is more complex in primates compared to smaller-brained mammals like rodents.An increase in the number of thalamic interneurons could arise from addition of novel interneuron types or from elaboration of a plesiomorphic ontogenetic program, common to all mammals. The former has been proposed for the human brain, with migration of interneurons from the ventral telencephalon into higher order thalamus as one of its unique features ([Letinic and Rakic, 2001][1]).Here, we identify a larger than expected complexity and distribution of interneurons across the mouse thalamus. All thalamic interneurons can be traced back to two developmental programs: one specified in the midbrain and the other in the forebrain. Interneurons migrate to functionally distinct thalamic nuclei, where the midbrain-derived cells populate the sensory thalamus, and forebrain-generated interneurons only the higher order regions. The latter interneuron type may be homologous to the one previously considered to be human-specific, while we also observe that markers for the midbrain-born class are abundantly expressed in the primate thalamus. These data therefore point to a shared ontogenetic organization of thalamic interneurons across mammals. [1]: #ref-50
0

The type of inhibition provided by thalamic interneurons alters the input selectivity of thalamocortical neurons.

Deyl Djama et al.Jan 20, 2024
+6
Z
F
D
A fundamental problem in neuroscience is how neurons select for their many inputs. A common assumption is that a neuron's selectivity is largely explained by differences in excitatory synaptic input weightings. Here we describe another solution to this important problem. We show that within the first order visual thalamus, the type of inhibition provided by thalamic interneurons has the potential to alter the input selectivity of thalamocortical neurons. To do this, we developed conductance injection protocols to compare how different types of synchronous and asynchronous GABA release influence thalamocortical excitability in response to realistic patterns of retinal ganglion cell input. We show that the asynchronous GABA release associated with tonic inhibition is particularly efficient at maintaining information content, ensuring that thalamocortical neurons can distinguish between their inputs. We propose a model where alterations in GABA release properties results in rapid changes in input selectivity without requiring structural changes in the network.