PC
Pieter Cullis
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(39% Open Access)
Cited by:
15,312
h-index:
104
/
i10-index:
298
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Drug Delivery Systems: Entering the Mainstream

Theresa Allen et al.Mar 19, 2004
P
T
Drug delivery systems (DDS) such as lipid- or polymer-based nanoparticles can be designed to improve the pharmacological and therapeutic properties of drugs administered parenterally. Many of the early problems that hindered the clinical applications of particulate DDS have been overcome, with several DDS formulations of anticancer and antifungal drugs now approved for clinical use. Furthermore, there is considerable interest in exploiting the advantages of DDS for in vivo delivery of new drugs derived from proteomics or genomics research and for their use in ligand-targeted therapeutics.
0

Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential

Michael Hope et al.Jan 1, 1985
P
G
M
M
A technique for the rapid production of large unilamellar vesicles by repeated extrusion under moderate pressures (⩽ lb/in2) of multilamellar vesicles through polycarbonate filters (100 nm pore size) is demonstrated. In combination with freeze-thaw protocols where required, this procedure results in unilamellar vesicles with diameters in the range 60–100 nm and with trapped volumes in the region of 1–3 μ1/μmol phospholipid. Advantages of this technique include the absence of organic solvents or detergents, the high lipid concentrations (up to 300 μmol/ml) that can be employed and the high trapping efficiencies (up to 30%) that can be achieved. Further, the procedure for generating these ‘LUVET's’ (large unilamellar vesicles by extrusion techniques) is rapid (⩽ 10 min preparation time) and can be employed to generate large unilamellar vesicles from a wide variety of lipid species and mixtures. As a particular illustration of the utility of this vesicle preparation, LUVET systems exhibiting a membrane potential (Δψ) in response to a transmembrane Na+/K+ gradient (K+ inside) have been characterized. By employing the lipophilic cation methyltriphenylphosphonium (MTPP+) it is shown that a K+ diffusion potential (Δψ<-100 mV) forms rapidly in the presence of the K+ ionophore valinomycin for soya phosphatidylcholine (soya PC) LUVET's. The values of Δψ obtained correlate well with the K+ concentration gradient across the membrane, and it is demonstrated that the decay of Δψ with time depends on the flux of Na+ into the vesicles.
0

Vesicles of variable sizes produced by a rapid extrusion procedure

Lawrence Mayer et al.Jun 1, 1986
P
M
L
Previous studies from this laboratory have shown that large unilamellar vesicles can be efficiently produced by extrusion of multilamellar vesicles through polycarbonate filters with a pore size of 100 nm (Hope, M.J., Bally, M.B., Webb, G. and Cullis, P.R. (1985) Biochim. Biophys. Acta 812, 55–65). In this work it is shown that similar procedures can be employed for the production of homogeneously sized unilamellar or plurilamellar vesicles by utilizing filters with pore sizes ranging from 30 to 400 nm. The unilamellarity and trapping efficiencies of these vesicles can be significantly enhanced by freezing and thawing the multilamellar vesicles prior to extrusion. This procedure is particularly applicable when very high lipid concentrations (400 mg/ml) are used, where extrusion of the frozen and thawed multilamellar vesicles through 100 and 400 nm filters results in trapping efficiencies of 56 and 80%, respectively. Freeze-fracture electron microscopy revealed that vesicles produced at these lipid concentrations exhibit size distributions and extent of multilamellar character comparable to systems produced at lower lipid levels. These results indicate that the freeze-thaw and extrusion process is the technique of choice for the production of vesicles of variable sizes and high trapping efficiency.
0

Rational design of cationic lipids for siRNA delivery

Sean Semple et al.Jan 17, 2010
+38
J
A
S
0
Citation1,488
0
Save
0

The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs

Akin Akinc et al.Dec 1, 2019
+15
M
M
A
The regulatory approval of Onpattro, a lipid nanoparticle-based short interfering RNA drug for the treatment of polyneuropathies induced by hereditary transthyretin amyloidosis, paves the way for clinical development of many nucleic acid-based therapies enabled by nanoparticle delivery.
0

Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo**

Muthusamy Jayaraman et al.Jul 10, 2012
+16
B
S
M
Special (lipid) delivery: The role of the ionizable lipid pKa in the in vivo delivery of siRNA by lipid nanoparticles has been studied with a large number of head group modifications to the lipids. A tight correlation between the lipid pKa value and silencing of the mouse FVII gene (FVII ED50) was found, with an optimal pKa range of 6.2–6.5 (see graph). The most potent cationic lipid from this study has ED50 levels around 0.005 mg kg−1 in mice and less than 0.03 mg kg−1 in non-human primates.
0
Citation938
0
Save
0

Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA

Nathan Belliveau et al.Jan 1, 2012
+9
P
J
N
Lipid nanoparticles (LNP) are the leading systems for in vivo delivery of small interfering RNA (siRNA) for therapeutic applications. Formulation of LNP siRNA systems requires rapid mixing of solutions containing cationic lipid with solutions containing siRNA. Current formulation procedures employ macroscopic mixing processes to produce systems 70-nm diameter or larger that have variable siRNA encapsulation efficiency, homogeneity, and reproducibility. Here, we show that microfluidic mixing techniques, which permit millisecond mixing at the nanoliter scale, can reproducibly generate limit size LNP siRNA systems 20 nm and larger with essentially complete encapsulation of siRNA over a wide range of conditions with polydispersity indexes as low as 0.02. Optimized LNP siRNA systems produced by microfluidic mixing achieved 50% target gene silencing in hepatocytes at a dose level of 10 µg/kg siRNA in mice. We anticipate that microfluidic mixing, a precisely controlled and readily scalable technique, will become the preferred method for formulation of LNP siRNA delivery systems.
0

Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics

Martin Maier et al.Jun 25, 2013
+26
T
K
M
In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available. In recent years, RNA interference (RNAi) therapeutics, most notably with lipid nanoparticle-based delivery systems, have advanced into human clinical trials. The results from these early clinical trials suggest that lipid nanoparticles (LNPs), and the novel ionizable lipids that comprise them, will be important materials in this emerging field of medicine. A persistent theme in the use of materials for biomedical applications has been the incorporation of biodegradability as a means to improve biocompatibility and/or to facilitate elimination. Therefore, the aim of this work was to further advance the LNP platform through the development of novel, next-generation lipids that combine the excellent potency of the most advanced lipids currently available with biodegradable functionality. As a representative example of this novel class of biodegradable lipids, the lipid evaluated in this work displays rapid elimination from plasma and tissues, substantially improved tolerability in preclinical studies, while maintaining in vivo potency on par with that of the most advanced lipids currently available.
0

Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles

L.D. Mayer et al.Jul 1, 1985
+3
M
L
L
It has recently been observed (Gruner, Lenk, Janoff and Ostro (1985) Biochemistry, in the press) that mechanical dispersion of dry lipid in an aqueous buffer to form multilamellar vesicle (MLV) systems does not result in equilibrium trans-membrane distributions of solute. In particular, the entrapped buffer exhibits reduced solute concentrations. Here we demonstrate that egg phosphatidylcholine MLV systems dispersed in the presence of Mn2+ also exhibit non-equilibrium solute distributions, and that repetitive freeze-thawing cycles can remove such solute heterogeneity. Further, the resulting freeze-thawed MLVs exhibit dramatically enhanced trapped volumes and trapping efficiencies. At 400 mg phospholipid per ml, for example, the trapping efficiencies can be as high as 90%. This is associated with a remarkable change in MLV morphology where large inter-bilayer separations are commonly observed.
0
Paper
Citation427
0
Save
0

Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures

Sean Semple et al.Feb 1, 2001
+8
T
S
S
Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.
Load More