The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). Porphyromonas gingivalis is a keystone oral pathogen associated with CRC. The oral pathobiont Fusobacterium nucleatum influences the anti-tumour functions of CRC-infiltrating iNKT cells. However, the impact of other oral bacteria, like P. gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumour microenvironment in CRC. Mechanistically, in vivo and in vitro experiments show that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery though increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing iNKT cells to upregulate CHI3L1, thus impairing iNKT cell cytotoxicity and promoting host tumour immune evasion.