MH
Maria Hakonen
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
273
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI

Parker Kotlarz et al.Dec 23, 2023
Abstract In graph theory, “multilayer networks” represent systems involving several interconnected topological levels. A neuroscience example is the hierarchy of connections between different cortical depths or “lamina”. This hierarchy is becoming non-invasively accessible in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-mm 3 voxels; 30 participants). Blood oxygenation level dependent (BOLD) signals were derived from five depths between the white matter and pial surface. We then compared networks where the inter-regional connections were limited to a single cortical depth only (“layer-by-layer matrices”) to those considering all possible connections between regions and cortical depths (“multilayer matrix”). We utilized global and local graph theory features that quantitatively characterize network attributes such as network composition, nodal centrality, path-based measures, and hub segregation. Detecting functional differences between cortical depths was improved using multilayer connectomics compared to the layer-by-layer versions. Superficial aspects of the cortex dominated information transfer and deeper aspects clustering. These differences were largest in frontotemporal and limbic brain regions. fMRI functional connectivity across different cortical depths may contain neurophysiologically relevant information. Multilayer connectomics could provide a methodological framework for studies on how information flows across this hierarchy.
0

Individual connectivity-based parcellations reflect functional properties of human auditory cortex

Maria Hakonen et al.Jan 21, 2024
Neuroimaging studies of the functional organization of human auditory cortex have focused on group-level analyses to identify tendencies that represent the typical brain. Here, we mapped auditory areas of the human superior temporal cortex (STC) in 30 participants by combining functional network analysis and 1-mm isotropic resolution 7T functional magnetic resonance imaging (fMRI). Two resting-state fMRI sessions, and one or two auditory and audiovisual speech localizer sessions, were collected on 3-4 separate days. We generated a set of functional network-based parcellations from these data. Solutions with 4, 6, and 11 networks were selected for closer examination based on local maxima of Dice and Silhouette values. The resulting parcellation of auditory cortices showed high intraindividual reproducibility both between resting state sessions (Dice coefficient: 69-78%) and between resting state and task sessions (Dice coefficient: 62-73%). This demonstrates that auditory areas in STC can be reliably segmented into functional subareas. The interindividual variability was significantly larger than intraindividual variability (Dice coefficient: 57%-68%, p<0.001), indicating that the parcellations also captured meaningful interindividual variability. The individual-specific parcellations yielded the highest alignment with task response topographies, suggesting that individual variability in parcellations reflects individual variability in auditory function. Connectional homogeneity within networks was also highest for the individual-specific parcellations. Furthermore, the similarity in the functional parcellations was not explainable by the similarity of macroanatomical properties of auditory cortex. Our findings suggest that individual-level parcellations capture meaningful idiosyncrasies in auditory cortex organization.