JH
Jiahuai Han
Author with expertise in Mammalian MAP Kinase Signaling Pathways
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
35
(77% Open Access)
Cited by:
17,847
h-index:
114
/
i10-index:
302
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pro-inflammatory Cytokines and Environmental Stress Cause p38 Mitogen-activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine

Joël Raingeaud et al.Mar 1, 1995
+4
J
S
J
Protein kinases activated by dual phosphorylation on Tyr and Thr (MAP kinases) can be grouped into two major classes: ERK and JNK. The ERK group regulates multiple targets in response to growth factors via a Ras-dependent mechanism. In contrast, JNK activates the transcription factor c-Jun in response to pro-inflammatory cytokines and exposure of cells to several forms of environmental stress. Recently, a novel mammalian protein kinase (p38) that shares sequence similarity with mitogen-activated protein (MAP) kinases was identified. Here, we demonstrate that p38, like JNK, is activated by treatment of cells with pro-inflammatory cytokines and environmental stress. The mechanism of p38 activation is mediated by dual phosphorylation on Thr-180 and Tyr-182. Immunofluorescence microscopy demonstrated that p38 MAP kinase is present in both the nucleus and cytoplasm of activated cells. Together, these data establish that p38 is a member of the mammalian MAP kinase group. Protein kinases activated by dual phosphorylation on Tyr and Thr (MAP kinases) can be grouped into two major classes: ERK and JNK. The ERK group regulates multiple targets in response to growth factors via a Ras-dependent mechanism. In contrast, JNK activates the transcription factor c-Jun in response to pro-inflammatory cytokines and exposure of cells to several forms of environmental stress. Recently, a novel mammalian protein kinase (p38) that shares sequence similarity with mitogen-activated protein (MAP) kinases was identified. Here, we demonstrate that p38, like JNK, is activated by treatment of cells with pro-inflammatory cytokines and environmental stress. The mechanism of p38 activation is mediated by dual phosphorylation on Thr-180 and Tyr-182. Immunofluorescence microscopy demonstrated that p38 MAP kinase is present in both the nucleus and cytoplasm of activated cells. Together, these data establish that p38 is a member of the mammalian MAP kinase group.
0

RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis

Duanwu Zhang et al.Jun 5, 2009
+5
J
J
D
The Grim RIPper Cells can undergo regulated cell death through distinct processes known as apoptosis and necrosis. Regulation of apoptosis is better understood than that of necrosis. In a screen for gene products that participate in control of necrosis in cells treated with TNF (tumor necrosis factor), D.-W. Zhang et al. (p. 332 ; published online 4 June) identified a protein kinase, RIP3. In cells treated with TNF and a caspase inhibitor that inhibits apoptosis, seven metabolic enzymes interacted with RIP3, some of which are associated with mitochondria. Generation of reactive oxygen species was necessary for TNF-induced necrosis, and depletion of RIP3 reduced the generation of reactive oxygen species. Thus, RIP3 may participate in the mechanisms that link energy metabolism with mechanisms of cell death.
0
Citation1,748
0
Save
0

Independent Human MAP-Kinase Signal Transduction Pathways Defined by MEK and MKK Isoforms

Benoît Dérijard et al.Feb 3, 1995
+4
T
J
B
Mammalian mitogen-activated protein (MAP) kinases include extracellular signal-regulated protein kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38 subgroups. These MAP kinase isoforms are activated by dual phosphorylation on threonine and tyrosine. Two human MAP kinase kinases (MKK3 and MKK4) were cloned that phosphorylate and activate p38 MAP kinase. These MKK isoforms did not activate the ERK subgroup of MAP kinases, but MKK4 did activate JNK. These data demonstrate that the activators of p38 (MKK3 and MKK4), JNK (MKK4), and ERK (MEK1 and MEK2) define independent MAP kinase signal transduction pathways.
0

Identification of Lps2 as a key transducer of MyD88-independent TIR signalling

Kasper Hoebe et al.Jul 20, 2003
+11
P
X
K
0
Citation1,222
0
Save
0

Cardiac Muscle Cell Hypertrophy and Apoptosis Induced by Distinct Members of the p38 Mitogen-activated Protein Kinase Family

Yibin Wang et al.Jan 1, 1998
+4
V
S
Y
p38 mitogen-activated protein (MAP) kinase activities were significantly increased in mouse hearts after chronic transverse aortic constriction, coincident with the onset of ventricular hypertrophy. Infection of cardiomyocytes with adenoviral vectors expressing upstream activators for the p38 kinases, activated mutants of MAP kinase kinase 3b(E) (MKK3bE) and MAP kinase kinase 6b(E) (MKK6bE), elicited characteristic hypertrophic responses, including an increase in cell size, enhanced sarcomeric organization, and elevated atrial natriuretic factor expression. Overexpression of the activated MKK3bE in cardiomyocytes also led to an increase in apoptosis. The hypertrophic response was enhanced by co-infection of an adenoviral vector expressing wild type p38β, and was suppressed by the p38β dominant negative mutant. In contrast, the MKK3bE-induced cell death was increased by co-infection of an adenovirus expressing wild type p38α, and was suppressed by the dominant negative p38α mutant. This provides the first evidence in any cell system for divergent physiological functions for different members of the p38 MAP kinase family. The direct involvement of p38 pathways in cardiac hypertrophy and apoptosis suggests a significant role for p38 signaling in the pathophysiology of heart failure.
0

Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability

Qing Jing et al.Mar 1, 2005
+7
S
S
Q
AU-rich elements (AREs) in the 3′ untranslated region (UTR) of unstable mRNAs dictate their degradation. An RNAi-based screen performed in Drosophila S2 cells has revealed that Dicer1, Argonaute1 (Ago1) and Ago2, components involved in microRNA (miRNA) processing and function, are required for the rapid decay of mRNA containing AREs of tumor necrosis factor-α. The requirement for Dicer in the instability of ARE-containing mRNA (ARE-RNA) was confirmed in HeLa cells. We further observed that miR16, a human miRNA containing an UAAAUAUU sequence that is complementary to the ARE sequence, is required for ARE-RNA turnover. The role of miR16 in ARE-RNA decay is sequence-specific and requires the ARE binding protein tristetraprolin (TTP). TTP does not directly bind to miR16 but interacts through association with Ago/eiF2C family members to complex with miR16 and assists in the targeting of ARE. miRNA targeting of ARE, therefore, appears to be an essential step in ARE-mediated mRNA degradation.
0
Citation845
0
Save
0

Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation

Jiahuai Han et al.Mar 1, 1997
+2
Z
Y
J
0

Characterization of the Structure and Function of a New Mitogen-activated Protein Kinase (p38β)

Yong Jiang et al.Jul 1, 1996
+4
Z
C
Y
Mitogen-activated protein (MAP) kinase cascades represent one of the major signal systems used by eukaryotic cells to transduce extracellular signals into cellular responses. Four MAP kinase subgroups have been identified in humans: ERK, JNK (SAPK), ERK5 (BMK), and p38. Here we characterize a new MAP kinase, p38β. p38β is a 372-amino acid protein most closely related to p38. It contains a TGY dual phosphorylation site, which is required for its kinase activity. Like p38, p38β is activated by proinflammatory cytokines and environmental stress. A comparison of events associated with the activation of p38β and p38 revealed differences, most notably in the preferred activation of p38β by MAP kinase kinase 6 (MKK6), whereas p38 was activated nearly equally by MKK3, MKK4, and MKK6. Moreover, in vitro and in vivo experiments showed a strong substrate preference by p38β for activating transcription factor 2 (ATF2). Enhancement of ATF2-dependent gene expression by p38β was ∼20-fold greater than that of p38 and other MAP kinases tested. The data reported here suggest that while closely related, p38β and p38 may be regulated by differing mechanisms and may exert their actions on separate downstream targets. Mitogen-activated protein (MAP) kinase cascades represent one of the major signal systems used by eukaryotic cells to transduce extracellular signals into cellular responses. Four MAP kinase subgroups have been identified in humans: ERK, JNK (SAPK), ERK5 (BMK), and p38. Here we characterize a new MAP kinase, p38β. p38β is a 372-amino acid protein most closely related to p38. It contains a TGY dual phosphorylation site, which is required for its kinase activity. Like p38, p38β is activated by proinflammatory cytokines and environmental stress. A comparison of events associated with the activation of p38β and p38 revealed differences, most notably in the preferred activation of p38β by MAP kinase kinase 6 (MKK6), whereas p38 was activated nearly equally by MKK3, MKK4, and MKK6. Moreover, in vitro and in vivo experiments showed a strong substrate preference by p38β for activating transcription factor 2 (ATF2). Enhancement of ATF2-dependent gene expression by p38β was ∼20-fold greater than that of p38 and other MAP kinases tested. The data reported here suggest that while closely related, p38β and p38 may be regulated by differing mechanisms and may exert their actions on separate downstream targets.
0

Rho Family GTPases Regulate p38 Mitogen-activated Protein Kinase through the Downstream Mediator Pak1

Shengjia Zhang et al.Oct 1, 1995
+4
M
J
S
The stress-activated p38 mitogen-activated protein (MAP) kinase defines a subgroup of the mammalian MAP kinases that appear to play a key role in regulating inflammatory responses. Co-expression of constitutively active forms of Rac and Cdc42 leads to activation of p38 while dominant negative Rac and Cdc42 inhibit the ability of interleukin-1 to increase p38 activity. p21-activated kinase 1 (Pak1) is a potential mediator of Rac/Cdc42 signaling, and we observe that Pak1 stimulates p38 activity. A dominant negative Pak1 suppresses both interleukin-1- and Rac/Cdc42-induced p38 activity. Rac and Cdc42 appear to regulate a protein kinase cascade initiated at the level of Pak and leading to activation of p38 and JNK. The stress-activated p38 mitogen-activated protein (MAP) kinase defines a subgroup of the mammalian MAP kinases that appear to play a key role in regulating inflammatory responses. Co-expression of constitutively active forms of Rac and Cdc42 leads to activation of p38 while dominant negative Rac and Cdc42 inhibit the ability of interleukin-1 to increase p38 activity. p21-activated kinase 1 (Pak1) is a potential mediator of Rac/Cdc42 signaling, and we observe that Pak1 stimulates p38 activity. A dominant negative Pak1 suppresses both interleukin-1- and Rac/Cdc42-induced p38 activity. Rac and Cdc42 appear to regulate a protein kinase cascade initiated at the level of Pak and leading to activation of p38 and JNK.
0

Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death

Xin Chen et al.Dec 24, 2013
+8
J
W
X
Mixed lineage kinase domain-like protein (MLKL) was identified to function downstream of receptor interacting protein 3 (RIP3) in tumor necrosis factor-α (TNF)-induced necrosis (also called necroptosis). However, how MLKL functions to mediate necroptosis is unknown. By reconstitution of MLKL function in MLKL-knockout cells, we showed that the N-terminus of MLKL is required for its function in necroptosis. The oligomerization of MLKL in TNF-treated cells is essential for necroptosis, as artificially forcing MLKL together by using the hormone-binding domain (HBD*) triggers necroptosis. Notably, forcing together the N-terminal domain (ND) but not the C-terminal kinase domain of MLKL causes necroptosis. Further deletion analysis showed that the four-α-helix bundle of MLKL (1-130 amino acids) is sufficient to trigger necroptosis. Both the HBD*-mediated and TNF-induced complexes of MLKL(ND) or MLKL are tetramers, and translocation of these complexes to lipid rafts of the plasma membrane precedes cell death. The homo-oligomerization is required for MLKL translocation and the signal sequence for plasma membrane location is located in the junction of the first and second α-helices of MLKL. The plasma membrane translocation of MLKL or MLKL(ND) leads to sodium influx, and depletion of sodium from the cell culture medium inhibits necroptosis. All of the above phenomena were not seen in apoptosis. Thus, the MLKL oligomerization leads to translocation of MLKL to lipid rafts of plasma membrane, and the plasma membrane MLKL complex acts either by itself or via other proteins to increase the sodium influx, which increases osmotic pressure, eventually leading to membrane rupture.
Load More