AM
Arnab Mukherjee
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
3
h-index:
29
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Similar enzymatic functions in distinct bioluminescence systems: Evolutionary recruitment of sulfotransferases in ostracod light organs

Emily Lau et al.Apr 13, 2023
+3
N
J
E
Abstract Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii , transfer sulfate in vivo to the luciferin substrate, vargulin. We find luciferin sulfotransferases of ostracods are not orthologous to known luciferin sulfotransferases of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Re-use of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.
1
Citation2
0
Save
1

Molecular imaging with aquaporin-based reporter genes: quantitative considerations from Monte Carlo diffusion simulations

Rochishnu Chowdhury et al.Jun 11, 2023
+4
R
J
R
Aquaporins provide a new class of genetic tools for imaging molecular activity in deep tissues by increasing the rate of cellular water diffusion, which generates magnetic resonance contrast. However, distinguishing aquaporin contrast from the tissue background is challenging because water diffusion is also influenced by structural factors such as cell size and packing density. Here, we developed and experimentally validated a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on time-dependent changes in diffusivity can improve specificity by unambiguously isolating aquaporin-driven contrast from the tissue background. Finally, we used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin, and established a simple mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. This study creates a framework for broad applications of aquaporins, particularly in biomedicine and in vivo synthetic biology, where quantitative methods to measure the location and performance of genetic devices in whole vertebrates are necessary.
0

Engineering water exchange is a safe and effective method for magnetic resonance imaging in diverse cell types

Austin Miller et al.Jan 1, 2023
+8
H
S
A
Aquaporin-1 (Aqp1), a water channel, has garnered significant interest for cell-based medicine and in vivo synthetic biology due to its ability to be genetically encoded to produce magnetic resonance signals by increasing the rate of water diffusion in cells. However, concerns regarding the effects of Aqp1 overexpression and increased membrane diffusivity on cell physiology have limited its widespread use as a deep-tissue reporter. In this study, we present evidence that Aqp1 generates strong diffusion-based magnetic resonance signals without adversely affecting cell viability or morphology in diverse cell lines derived from mice and humans. Our findings indicate that Aqp1 overexpression does not induce ER stress, which is frequently associated with heterologous expression of membrane proteins. Furthermore, we observed that Aqp1 expression had no detrimental effects on native biological activities, such as phagocytosis, immune response, insulin secretion, and tumor cell migration in the analyzed cell lines. These findings should serve to alleviate any lingering safety concerns regarding the utilization of Aqp1 as a genetic reporter and should foster its broader application as a noninvasive reporter for in vivo studies.
1

Engineering ligand stabilized aquaporin reporters for magnetic resonance imaging

Jason Yun et al.Jun 5, 2023
+7
Y
L
J
Imaging transgene expression in live tissues requires reporters that are detectable with deeply penetrant modalities, such as magnetic resonance imaging (MRI). Here, we show that LSAqp1, a water channel engineered from aquaporin-1, can be used to create background-free, drug-gated, and multiplex images of gene expression using MRI. LSAqp1 is a fusion protein composed of aquaporin-1 and a degradation tag that is sensitive to a cell-permeable ligand, which allows for dynamic small molecule modulation of MRI signals. LSAqp1 improves specificity for imaging gene expression by allowing reporter signals to be conditionally activated and distinguished from the tissue background by difference imaging. In addition, by engineering destabilized aquaporin-1 variants with different ligand requirements, it is possible to image distinct cell types simultaneously. Finally, we expressed LSAqp1 in a tumor model and showed successful in vivo imaging of gene expression without background activity. LSAqp1 provides a conceptually unique approach to accurately measure gene expression in living organisms by combining the physics of water diffusion and biotechnology tools to control protein stability.
4

A protein-based biosensor for detecting calcium by magnetic resonance imaging

Harun Ozbakir et al.Feb 4, 2021
+3
K
A
H
ABSTRACT Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer an attractive approach to noninvasively image neural activity with wide coverage in deep brain regions. However, current MRI sensors for calcium are based on synthetic architectures fundamentally incompatible with genetic technologies for in vivo delivery and targeting. Here, we present a protein-based MRI sensor for calcium, derived from a calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese. We demonstrate that this mechanism allows calprotectin to alter T 1 and T 2 weighted contrast in response to biologically relevant calcium concentrations. Corresponding changes in relaxation times are comparable to synthetic calcium sensors and exceed those of previous protein-based MRI sensors for other neurochemical targets. The biological applicability of calprotectin was established by detecting calcium in lysates prepared from a neuronal cell line. Calprotectin thus represents a promising path towards imaging neural activity by combining the benefits of MRI and protein sensors.
8

A genetically engineered phage-based nanomaterial for detecting bacteria with magnetic resonance imaging

Raymond Borg et al.Jun 7, 2022
+5
B
H
R
ABSTRACT The ability to noninvasively detect bacteria at any depth inside opaque tissues has important applications ranging from infection diagnostics to tracking therapeutic microbes in their mammalian host. Current examples of probes for detecting bacteria with strain-type specificity are largely based on optical dyes, which cannot be used to examine bacteria in deep tissues due to the physical limitation of light scattering. Here, we describe a new biomolecular probe for visualizing bacteria in a cell-type specific fashion using magnetic resonance imaging (MRI). The probe is based on a peptide that selectively binds manganese and is attached in high numbers to the capsid of filamentous phage. By genetically engineering phage particles to display this peptide, we are able to bring manganese ions to specific bacterial cells targeted by the phage, thereby producing MRI contrast. We show that this approach allows MRI-based detection of targeted E. coli strains while discriminating against non-target bacteria as well as mammalian cells. By engineering the phage coat to display a protein that targets cell surface receptors in V. cholerae , we further show that this approach can be applied to image other bacterial targets with MRI. Finally, as a preliminary example of in vivo applicability, we demonstrate MR imaging of phage-labeled V. cholerae cells implanted subcutaneously in mice. The nanomaterial developed here thus represents a path towards noninvasive detection and tracking of bacteria by combining the programmability of phage architecture with the ability to produce three- dimensional images of biological structures at any arbitrary depth with MRI.
1

Triggered functional dynamics of AsLOV2 by time-resolved electron paramagnetic resonance at high magnetic fields

Shiny Maity et al.Oct 14, 2022
+9
B
M
S
Abstract We present time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter-residue distances during a protein’s mechanical cycle in the solution state. TiGGER makes use of Gd-sTPATCN as spin labels, whose favorable qualities include a spin-7/2 EPR-active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we determined that upon light activation, the C-terminus and N-terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER revealed that the light-activated long-range mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins.
0

Exploring the potential of water channels for developing MRI reporters and sensors without the need for exogenous contrast agents

Alex Chacko et al.Jan 23, 2024
A
K
A
A
Genetically encoded reporters for magnetic resonance imaging (MRI) offer a valuable technology for making molecular-scale measurements of biological processes within living organisms with high anatomical resolution and whole-organ coverage without relying on ionizing radiation. However, most MRI reporters rely on contrast agents, typically paramagnetic metals and metal complexes, which often need to be supplemented exogenously to create optimal contrast. To eliminate the need for contrast agents, we previously introduced aquaporin-1, a mammalian water channel, as a new reporter gene for the fully autonomous detection of genetically labeled cells using diffusion-weighted MRI. In this study, we aimed to expand the toolbox of diffusion-based genetic reporters by modulating aquaporin membrane trafficking and harnessing the evolutionary diversity of water channels across species. We identified a number of new water channels that functioned as diffusion-weighted reporter genes. In addition, we show that loss-of-function variants of yeast and human aquaporins can be leveraged to design first-in-class diffusion-based sensors for detecting the activity of a model protease within living cells.
0

A Genetically Encoded Reporter for Diffusion Weighted Magnetic Resonance Imaging

Arnab Mukherjee et al.Jan 25, 2016
M
H
D
A
The ability to monitor gene expression in intact, optically opaque animals is important for a multitude of applications including longitudinal imaging of transgene expression and long term tracking of cell based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatial and temporal resolution. However, existing MRI reporter genes, based primarily on metal-binding proteins or chemical exchange saturation transfer probes, are limited by their reliance on metal ions or relatively low sensitivity. In this work, we introduce a new class of genetically encoded reporters for MRI that work by altering water diffusivity. We show that overexpression of the human water channel aquaporin 1 (AQP1) produces robust contrast in diffusion weighted MRI by increasing effective water diffusivity in tissues by over 100% without affecting cell viability or morphology. Low levels of AQP1 expression (~1 μM), or mixed populations comprising as few as 10% AQP1-expressing cells, produce sufficient contrast to be observed by MRI. We demonstrate the utility of AQP1 in vivo by imaging gene expression in intracranial tumor xenografts. Overall, our results establish AQP1 as a new, metal-free, nontoxic and sensitive genetically encoded reporter for diffusion weighted MRI.
0

A dual-gene reporter-amplifier architecture for enhancing the sensitivity of molecular MRI by water exchange

Yimeng Huang et al.Jan 25, 2024
A
Z
X
Y
Abstract The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in intact animals. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small percentage of cells express the reporter. To overcome this limitation, we developed an approach that amplifies signals by co-expressing an MRI reporter gene, Oatp1b3, with a water channel, aquaporin-1 (Aqp1). We first show that the expression of Aqp1 amplifies the paramagnetic relaxation effect of Oatp1b3 by facilitating transmembrane water exchange. This mechanism provides Oatp1b3-expressing cells with access to a larger water pool compared with typical exchange-limited conditions. We further demonstrated that our methodology allows dual-labeled cells to be detected using approximately 10-fold lower concentrations of contrast agent than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell populations containing a low fraction of Oatp1b3-labeled cells that are otherwise undetectable based on Oatp1b3 expression alone.