FG
Fabio González
Author with expertise in Deep Learning in Medical Image Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
2,484
h-index:
44
/
i10-index:
120
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks

Ángel Cruz-Roa et al.Mar 20, 2014
This paper presents a deep learning approach for automatic detection and visual analysis of invasive ductal carcinoma (IDC) tissue regions in whole slide images (WSI) of breast cancer (BCa). Deep learning approaches are learn-from-data methods involving computational modeling of the learning process. This approach is similar to how human brain works using different interpretation levels or layers of most representative and useful features resulting into a hierarchical learned representation. These methods have been shown to outpace traditional approaches of most challenging problems in several areas such as speech recognition and object detection. Invasive breast cancer detection is a time consuming and challenging task primarily because it involves a pathologist scanning large swathes of benign regions to ultimately identify the areas of malignancy. Precise delineation of IDC in WSI is crucial to the subsequent estimation of grading tumor aggressiveness and predicting patient outcome. DL approaches are particularly adept at handling these types of problems, especially if a large number of samples are available for training, which would also ensure the generalizability of the learned features and classifier. The DL framework in this paper extends a number of convolutional neural networks (CNN) for visual semantic analysis of tumor regions for diagnosis support. The CNN is trained over a large amount of image patches (tissue regions) from WSI to learn a hierarchical part-based representation. The method was evaluated over a WSI dataset from 162 patients diagnosed with IDC. 113 slides were selected for training and 49 slides were held out for independent testing. Ground truth for quantitative evaluation was provided via expert delineation of the region of cancer by an expert pathologist on the digitized slides. The experimental evaluation was designed to measure classifier accuracy in detecting IDC tissue regions in WSI. Our method yielded the best quantitative results for automatic detection of IDC regions in WSI in terms of F-measure and balanced accuracy (71.80%, 84.23%), in comparison with an approach using handcrafted image features (color, texture and edges, nuclear textural and architecture), and a machine learning classifier for invasive tumor classification using a Random Forest. The best performing handcrafted features were fuzzy color histogram (67.53%, 78.74%) and RGB histogram (66.64%, 77.24%). Our results also suggest that at least some of the tissue classification mistakes (false positives and false negatives) were less due to any fundamental problems associated with the approach, than the inherent limitations in obtaining a very highly granular annotation of the diseased area of interest by an expert pathologist.
0

Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent

Ángel Cruz-Roa et al.Apr 18, 2017
With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent of breast cancer by a pathologist is critical for patient management for tumor staging and assessing treatment response. However, this process is tedious and subject to inter- and intra-reader variability. For computerized methods to be useful as decision support tools, they need to be resilient to data acquired from different sources, different staining and cutting protocols and different scanners. The objective of this study was to evaluate the accuracy and robustness of a deep learning-based method to automatically identify the extent of invasive tumor on digitized images. Here, we present a new method that employs a convolutional neural network for detecting presence of invasive tumor on whole slide images. Our approach involves training the classifier on nearly 400 exemplars from multiple different sites, and scanners, and then independently validating on almost 200 cases from The Cancer Genome Atlas. Our approach yielded a Dice coefficient of 75.86%, a positive predictive value of 71.62% and a negative predictive value of 96.77% in terms of pixel-by-pixel evaluation compared to manually annotated regions of invasive ductal carcinoma.
0

Representation learning for mammography mass lesion classification with convolutional neural networks

John Arévalo et al.Jan 7, 2016
The automatic classification of breast imaging lesions is currently an unsolved problem. This paper describes an innovative representation learning framework for breast cancer diagnosis in mammography that integrates deep learning techniques to automatically learn discriminative features avoiding the design of specific hand-crafted image-based feature detectors. A new biopsy proven benchmarking dataset was built from 344 breast cancer patients’ cases containing a total of 736 film mammography (mediolateral oblique and craniocaudal) views, representative of manually segmented lesions associated with masses: 426 benign lesions and 310 malignant lesions. The developed method comprises two main stages: (i) preprocessing to enhance image details and (ii) supervised training for learning both the features and the breast imaging lesions classifier. In contrast to previous works, we adopt a hybrid approach where convolutional neural networks are used to learn the representation in a supervised way instead of designing particular descriptors to explain the content of mammography images. Experimental results using the developed benchmarking breast cancer dataset demonstrated that our method exhibits significant improved performance when compared to state-of-the-art image descriptors, such as histogram of oriented gradients (HOG) and histogram of the gradient divergence (HGD), increasing the performance from 0.787 to 0.822 in terms of the area under the ROC curve (AUC). Interestingly, this model also outperforms a set of hand-crafted features that take advantage of additional information from segmentation by the radiologist. Finally, the combination of both representations, learned and hand-crafted, resulted in the best descriptor for mass lesion classification, obtaining 0.826 in the AUC score. A novel deep learning based framework to automatically address classification of breast mass lesions in mammography was developed.
0

A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection

Ángel Cruz-Roa et al.Jan 1, 2013
This paper presents and evaluates a deep learning architecture for automated basal cell carcinoma cancer detection that integrates (1) image representation learning, (2) image classification and (3) result interpretability. A novel characteristic of this approach is that it extends the deep learning architecture to also include an interpretable layer that highlights the visual patterns that contribute to discriminate between cancerous and normal tissues patterns, working akin to a digital staining which spotlights image regions important for diagnostic decisions. Experimental evaluation was performed on set of 1,417 images from 308 regions of interest of skin histopathology slides, where the presence of absence of basal cell carcinoma needs to be determined. Different image representation strategies, including bag of features (BOF), canonical (discrete cosine transform (DCT) and Haar-based wavelet transform (Haar)) and proposed learned-from-data representations, were evaluated for comparison. Experimental results show that the representation learned from a large histology image data set has the best overall performance (89.4% in F-measure and 91.4% in balanced accuracy), which represents an improvement of around 7% over canonical representations and 3% over the best equivalent BOF representation.
0

Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features

Haibo Wang et al.Oct 10, 2014
Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is the mitotic count, which involves quantifying the number of cells in the process of dividing (i.e., undergoing mitosis) at a specific point in time. Currently, mitosis counting is done manually by a pathologist looking at multiple high power fields (HPFs) on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical, or textural attributes of mitoses or features learned with convolutional neural networks (CNN). Although handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely supervised feature generation methods, there is an appeal in attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. We present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color, and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing the performance by leveraging the disconnected feature sets. Evaluation on the public ICPR12 mitosis dataset that has 226 mitoses annotated on 35 HPFs ([Formula: see text] magnification) by several pathologists and 15 testing HPFs yielded an [Formula: see text]-measure of 0.7345. Our approach is accurate, fast, and requires fewer computing resources compared to existent methods, making this feasible for clinical use.
0
Citation319
0
Save
2

FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

Karim Lekadir et al.Jan 1, 2023
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.
0

Sistema de auditoría automática para la exploración endoscópica del estómago con Inteligencia Artificial – Gastro UNAL: Gastroendoscopy UNit for Automatic Labeling

Martín Zuleta et al.Jun 27, 2024
Introducción: la endoscopia digestiva alta es el método estándar para diagnosticar el cáncer gástrico en etapas tempranas. Sin embargo, su precisión puede verse afectada por la variabilidad en su realización, y se estiman hasta 20% de tumores no detectados. En Colombia, la mayoría de los diagnósticos se realizan en etapas avanzadas, lo que agrava el problema. Para abordar la variabilidad, se han propuesto protocolos con el fin de asegurar la observación completa de áreas propensas a lesiones premalignas. Objetivo: construir y validar un sistema de auditoría automática para endoscopias usando técnicas de inteligencia artificial. Metodología: en este estudio, 96 pacientes de un hospital universitario se sometieron a endoscopias documentadas en video, abarcando 22 estaciones reorganizadas para minimizar solapamientos y mejorar la identificación de 13 regiones gástricas clave. Se utilizó una red convolucional avanzada para procesar las imágenes, extrayendo características visuales, lo que facilitó el entrenamiento de la inteligencia artificial en la clasificación de estas áreas. Resultados: el modelo, llamado Gastro UNAL, fue entrenado y validado con imágenes de 67 pacientes (70% de los casos) y probado con 29 pacientes distintos (30% de los casos), con lo que alcanzó una sensibilidad promedio del 85,5% y una especificidad del 98,8% en la detección de las 13 regiones gástricas. Conclusiones: la eficacia del modelo sugiere su potencial para asegurar la calidad y precisión de las endoscopias. Este enfoque podría confirmar las regiones evaluadas, alertando puntos ciegos en la exploración a los endoscopistas con menos experiencia o en entrenamiento, de tal forma que se aumente la calidad de estos procedimientos.
0
Citation1
0
Save
Load More