CK
C. Kurz
Author with expertise in Insect Symbiosis and Microbial Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
871
h-index:
22
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans

Nathalie Pujol et al.Jun 1, 2001
Background: Both animals and plants respond rapidly to pathogens by inducing the expression of defense-related genes. Whether such an inducible system of innate immunity is present in the model nematode Caenorhabditis elegans is currently an open question. Among conserved signaling pathways important for innate immunity, the Toll pathway is the best characterized. In Drosophila, this pathway also has an essential developmental role. C. elegans possesses structural homologs of components of this pathway, and this observation raises the possibility that a Toll pathway might also function in nematodes to trigger defense mechanisms or to control development.Results: We have generated and characterized deletion mutants for four genes supposed to function in a nematode Toll signaling pathway. These genes are tol-1, trf-1, pik-1, and ikb-1 and are homologous to the Drosophila melanogaster Toll, dTraf, pelle, and cactus genes, respectively. Of these four genes, only tol-1 is required for nematode development. None of them are important for the resistance of C. elegans to a number of pathogens. On the other hand, C. elegans is capable of distinguishing different bacterial species and has a tendency to avoid certain pathogens, including Serratia marcescens. The tol-1 mutants are defective in their avoidance of pathogenic S. marcescens, although other chemosensory behaviors are wild type.Conclusions: In C. elegans, tol-1 is important for development and pathogen recognition, as is Toll in Drosophila, but remarkably for the latter rôle, it functions in the context of a behavioral mechanism that keeps worms away from potential danger.
0
Citation417
0
Save
0

Spatial and temporal coordination of Duox/TrpA1/Dh31 and IMD pathways is required for the efficient elimination of pathogenic bacteria in the intestine ofDrosophilalarvae

Fatima Tleiss et al.Jan 27, 2024
Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster , production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. An alternative protective mechanism would be to selectively prevent the penetration of the intestinal tract by pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely enter and cross the larval midgut, pathogenic strains such as. Erwinia carotovora or Bacillus thuringiensis , are actively locked down in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to trigger lockdown, suggesting the existence of a conserved mechanism. While the IMD pathway is essential for eliminating the trapped bacteria, it is dispensable for the lockdown. Genetic manipulations impairing bacterial lockdown results in abnormal colonization of posterior midgut regions by pathogenic bacteria. This ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are compartimentalized in the anterior part of the midgut in which they are eliminated in an IMD pathway dependent manner.
4

Larval microbiota primes theDrosophilaadult gustatory response

Martina Montanari et al.Mar 14, 2023
Abstract The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of axenic larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.
0

Spatial and temporal coordination of Duox/TrpA1/Dh31 and IMD pathways is required for the efficient elimination of pathogenic bacteria in the intestine of Drosophila larvae

Fatima Tleiss et al.Nov 22, 2024
Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster , production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis , are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.