AA
Adrian Arrieta
Author with expertise in Mammalian Circadian Rhythms and Physiology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Decreased Left Atrial Cardiomyocyte FGF13 Expression Increases Vulnerability to Postoperative Atrial Fibrillation in Humans

Matthew Fischer et al.Jan 31, 2024
Abstract Postoperative atrial fibrillation (POAF) is the most common complication after cardiac surgery and a significant cause of increased morbidity and mortality. The development of novel POAF therapeutics has been limited by an insufficient understanding of molecular mechanisms promoting atrial fibrillation. In this observational cohort study, we enrolled 28 patients without a history of atrial fibrillation that underwent mitral valve surgery for degenerative mitral regurgitation and obtained left atrial tissue samples along the standard atriotomy incision in proximity to the right pulmonary veins. We isolated cardiomyocytes and performed transcriptome analyses demonstrating 13 differentially expressed genes associated with new-onset POAF. Notably, decreased expression of fibroblast growth factor 13 (FGF13), a fibroblast growth factor homologous factor known to modulate voltage-gated sodium channel Na V 1.5 inactivation, had the most significant association with POAF. To assess the functional significance of decreased FGF13 expression in atrial myocytes, we performed patch clamp experiments on neonatal rat atrial myocytes after siRNA-mediated FGF13 knockdown, demonstrating action potential prolongation. These critical findings indicate that decreased FGF13 expression promotes vulnerability to POAF.
0

Circadian Control of Histone Turnover During Cardiac Development and Growth

Adrian Arrieta et al.Jun 1, 2024
During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting a role for the circadian clock in temporal control of histone turnover and coordinated cardiomyocyte gene expression. To elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Bmal1 knockdown in neonatal rat ventricular myocytes (NRVM) decreased myocyte size, total cellular protein synthesis, and transcription of the fetal hypertrophic gene Nppb following treatment with serum or the α-adrenergic agonist phenylephrine (PE). Depletion of Bmal1 decreased expression of clock-controlled genes Per2 and Tcap, as well as Sik1, a Bmal1 target upregulated in adult versus embryonic hearts. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by MNase-qPCR and impaired histone turnover as measured by metabolic labeling of acid-soluble chromatin fractions. Sik1 knockdown in turn decreased myocyte size, while simultaneously inhibiting Nppb transcription and activating Per2 transcription. Linking these changes to chromatin remodeling, depletion of the replication-independent histone variant H3.3a inhibited myocyte hypertrophy and prevented PE-induced changes in clock-controlled gene transcription. Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription. Replication-independent histone turnover is required for transcriptional remodeling of clock-controlled genes in cardiac myocytes in response to growth stimuli.
0

Circadian Control of Histone Turnover During Cardiac Development and Growth

Adrian Arrieta et al.Nov 14, 2023
Rationale: During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting an unrecognized role for the circadian clock in temporal control of histone turnover and coordinate cardiomyocyte gene expression. Objective: To elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Methods and Results: Bmal1 knockdown in neonatal rat ventricular myocytes (NRVM) decreased myocyte size, total cellular protein, and transcription of the fetal hypertrophic gene Nppb following treatment with increasing serum concentrations or the α-adrenergic agonist phenylephrine (PE). Bmal1 knockdown decreased expression of clock-controlled genes Per2 and Tcap, and salt-inducible kinase 1 (Sik1) which was identified via gene ontology analysis of Bmal1 targets upregulated in adult versus embryonic hearts. Epigenomic analyses revealed co-localized chromatin accessibility and Bmal1 localization in the Sik1 promoter. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by MNase-qPCR and impaired histone turnover indicated by metabolic labeling of acid-soluble chromatin fractions and immunoblots of total and chromatin-associated core histones. Sik1 knockdown basally increased myocyte size, while simultaneously impairing and driving Nppb and Per2 transcription, respectively. Conclusions: Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription.