YY
Yavuz Yazicioglu
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Plasma iron controls neutrophil production and function

J. Frost et al.Mar 18, 2022
Summary Low plasma iron (hypoferremia) induced by hepcidin is a conserved inflammatory response that protects against infections but inhibits erythropoiesis. How hypoferremia influences leukocytogenesis is unclear. Using proteomic data, we predicted that neutrophil production would be profoundly more iron-demanding than generation of other white blood cell types. Accordingly in mice, hepcidin-mediated hypoferremia substantially reduced numbers of granulocytes but not monocytes, lymphocytes or dendritic cells. Neutrophil rebound after anti-GR1-induced neutropenia was blunted during hypoferremia, but was rescued by supplemental iron. Similarly, hypoferremia markedly inhibited pharmacologically-stimulated granulopoiesis mediated by GCSF and inflammation-induced accumulation of neutrophils in the spleen and peritoneal cavity. Furthermore, hypoferremia specifically altered neutrophil effector functions, suppressing antibacterial mechanisms but enhancing mitochondrial ROS-dependent NETosis associated with chronic inflammation. Notably, antagonising endogenous hepcidin during acute inflammation enhanced production of neutrophils. We propose plasma iron modulates the profile of innate immunity by controlling monocyte-to-neutrophil ratio and neutrophil activity in a therapeutically targetable system.
6
Citation1
0
Save
0

Inheritance of old mitochondria controls early CD8+T cell fate commitment and is regulated by autophagy

Mariana Borsa et al.Jan 31, 2024
Abstract T cell immunity is impaired during ageing, particularly in memory responses needed for efficient vaccination. Autophagy and asymmetric cell division (ACD) are cell biological mechanisms key to memory formation, which undergo a decline upon ageing. However, despite the fundamental importance of these processes in cellular function, the link between ACD and in vivo fate decisions has remained highly correlative in T cells and in the field of mammalian ACD overall. Here we provide robust causal evidence linking ACD to in vivo T cell fate decisions and our data are consistent with the concept that initiation of asymmetric T cell fates is regulated by autophagy. Analysing the proteome of first-daughter CD8 + T cells following TCR-triggered activation, we reveal that mitochondrial proteins rely on autophagy for their asymmetric inheritance and that damaged mitochondria are polarized upon first division. These results led us to evaluate whether mitochondria were asymmetrically inherited and to functionally address their impact on T cell fate. For this we used a novel mouse model that allows sequential tagging of mitochondria in mother and daughter cells, enabling their isolation and subsequent in vivo analysis of CD8 + T cell progenies based on pre-mitotic cell cargo. Autophagy-deficient CD8 + T cells showed impaired clearance and symmetric inheritance of old mitochondria, suggesting that degradation events promote asymmetry and are needed to generate T cells devoid of old organelles. Daughter cells inheriting old mitochondria are more glycolytic and upon adoptive transfer show reduced memory potential, whereas daughter cells that have not inherited old mitochondria from the mother cell are long-lived and expand upon cognate-antigen challenge. Proteomic and single-cell transcriptomic analysis of cells inheriting aged mitochondria suggest that their early fate divergence relies on one carbon metabolism as a consequence of poor mitochondrial quality and function. These findings increase our understanding of how T cell diversity is early-imprinted during division and will help foster the development of strategies to modulate T cell function. Abstract Figure The MitoSnap model allows tracking of pre-mitotic and post-mitotic cell cargoes. Both segregation and degradation (autophagy) contribute to the asymmetric inheritance of old mitochondria. Old mitochondria impact cell metabolism and function. Cells devoid of old mitochondria exhibit better memory potential in vivo .
2

Dynamic mitochondrial transcription and translation in B cells control germinal centre entry and lymphomagenesis

Yavuz Yazicioglu et al.Jul 20, 2022
Abstract Germinal centre (GC) B cells undergo proliferation at very high rates in a hypoxic microenvironment, but the cellular processes driving this are incompletely understood. Here we show that the mitochondria of GC B cells are highly dynamic, with significantly upregulated transcription and translation rates associated with the activity of transcription factor mitochondrial A (TFAM). TFAM, whilst also necessary for normal B cell development, is required for entry of activated GC-precursor B cells into the germinal centre reaction, and deletion of Tfam significantly impairs GC formation, function, and output. Loss of TFAM in B cells compromises the actin cytoskeleton and impairs cellular motility of GC B cells in response to chemokine signalling, leading to their spatial disorganisation. We show that B cell lymphoma substantially increases mitochondrial translation, and deletion of Tfam in B cells is protective against the development of lymphoma in a c-Myc transgenic model. Finally, we show that pharmacologic inhibition of mitochondrial transcription and translation inhibits growth of GC-derived human lymphoma cells, and induces similar defects in the actin cytoskeleton.
7

Asparagine availability controls B cell homeostasis

Yavuz Yazicioglu et al.Apr 5, 2023
Abstract Germinal centre (GC) B cells proliferate at some of the highest rates of any mammalian cell, yet the metabolic processes which enable this are poorly understood. We performed integrated metabolomic and transcriptomic profiling of GC B cells, and found that metabolism of the non-essential amino acid asparagine (Asn) was highly upregulated. Asn was conditionally essential to B cells, and its synthetic enzyme, asparagine synthetase (ASNS) was upregulated following their activation, particularly more markedly in the absence of Asn, through the integrated stress response sensor general control non-derepressible 2 (GCN2). When Asns is deleted B cell survival and proliferation in low Asn conditions were strongly impaired, and removal of environmental Asn by asparaginase or dietary restriction markedly compromised the GC reaction, impairing affinity maturation and the humoral response to influenza infection. Using stable isotope tracing, we found that metabolic adaptation to the absence of Asn requires ASNS, and that oxidative phosphorylation, mitochondrial homeostasis, and synthesis of nucleotides was particularly sensitive to Asn deprivation. Altogether, we reveal that Asn metabolism acts as a key regulator of B cell function and GC homeostasis.