AV
Alex Vesztrocy
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
1,631
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GOATOOLS: A Python library for Gene Ontology analyses

D. Klopfenstein et al.Jul 12, 2018
Abstract The biological interpretation of gene lists with interesting shared properties, such as up- or down-regulation in a particular experiment, is typically accomplished using gene ontology enrichment analysis tools. Given a list of genes, a gene ontology (GO) enrichment analysis may return hundreds of statistically significant GO results in a “flat” list, which can be challenging to summarize. It can also be difficult to keep pace with rapidly expanding biological knowledge, which often results in daily changes to any of the over 47,000 gene ontologies that describe biological knowledge. GOATOOLS, a Python-based library, makes it more efficient to stay current with the latest ontologies and annotations, perform gene ontology enrichment analyses to determine over- and under-represented terms, and organize results for greater clarity and easier interpretation using a novel GOATOOLS GO grouping method. We performed functional analyses on both stochastic simulation data and real data from a published RNA-seq study to compare the enrichment results from GOATOOLS to two other popular tools: DAVID and GOstats. GOATOOLS is freely available through GitHub: https://github.com/tanghaibao/goatools .
0
Citation862
0
Save
1

The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

Naihui Zhou et al.Nov 19, 2019
Abstract Background The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster , which we suspected of being involved in long-term memory. Conclusion We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster , it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.
1
Citation346
0
Save
28

OMAmer: tree-driven and alignment-free protein assignment to subfamilies outperforms closest sequence approaches

Victor Rossier et al.May 1, 2020
Abstract Assigning new sequences to known protein families and subfamilies is a prerequisite for many functional, comparative and evolutionary genomics analyses. Such assignment is commonly achieved by looking for the closest sequence in a reference database, using a method such as BLAST. However, ignoring the gene phylogeny can be misleading because a query sequence does not necessarily belong to the same subfamily as its closest sequence. For example, a hemoglobin which branched out prior to the hemoglobin alpha/beta duplication could be closest to a hemoglobin alpha or beta sequence, whereas it is neither. To overcome this problem, phylogeny-driven tools have emerged but rely on gene trees, whose inference is computationally expensive. Here, we first show that in multiple animal and plant datasets, 18 to 62% of assignments by closest sequence are misassigned, typically to an over-specific subfamily. Then, we introduce OMAmer, a novel alignment-free protein subfamily assignment method, which limits over-specific subfamily assignments and is suited to phylogenomic databases with thousands of genomes. OMAmer is based on an innovative method using evolutionarily-informed k -mers for alignment-free mapping to ancestral protein subfamilies. Whilst able to reject non-homologous family-level assignments, we show that OMAmer provides better and quicker subfamily-level assignments than approaches relying on the closest sequence, whether inferred exactly by Smith-Waterman or by the fast heuristic DIAMOND. OMAmer is available from the Python Package Index (as omamer), with the source code and a precomputed database available at https://github.com/DessimozLab/omamer .
0

OMA standalone: orthology inference among public and custom genomes and transcriptomes

Adrian Altenhoff et al.Aug 22, 2018
Genomes and transcriptomes are now typically sequenced by individual labs, but analysing them often remains challenging. One essential step in many analyses lies in identifying orthologs — corresponding genes across multiple species — but this is far from trivial. The OMA (Orthologous MAtrix) database is a leading resource for identifying orthologs among publicly available, complete genomes. Here, we describe the OMA pipeline available as a standalone program for Linux and Mac. When run on a cluster, it has native support for the LSF, SGE, PBS Pro, and Slurm job schedulers and can scale up to thousands of parallel processes. Another key feature of OMA standalone is that users can combine their own data with existing public data by exporting genomes and pre-computed alignments from the OMA database, which currently contains over 2100 complete genomes. We compare OMA standalone to other methods in the context of phylogenetic tree inference, by inferring a phylogeny of the Lophotrochozoa, a challenging clade within the Protostomes. We also discuss other potential applications of OMA standalone, including identifying gene families having undergone duplications/losses in specific clades, and identifying potential drug targets in non-model organisms. OMA Standalone is available at http://omabrowser.org/standalone under the permissible open source Mozilla Public License Version 2.0.