DH
David Huss
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
819
h-index:
26
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Asymmetric Localization of Vangl2 and Fz3 Indicate Novel Mechanisms for Planar Cell Polarity in Mammals

Mireille Montcouquiol et al.May 10, 2006
Planar cell polarity (PCP) is a process in which cells develop with uniform orientation within the plane of an epithelium. To begin to elucidate the mechanisms of PCP in vertebrates, the localization of the protein Vangl2 (Van Gogh-like) was determined during the development of the mammalian cochlea. Results indicate that Vangl2 becomes asymmetrically localized to specific cell–cell boundaries along the axis of polarization and that this asymmetry is lost in PCP mutants. In addition, PDZ2 (postsynaptic density/Discs large/zona occludens 1), PDZ3, and PDZ4 of the PCP protein Scrb1 (Scribble) are shown to bind to the C-terminal PDZ binding domain of Vangl2, suggesting that Scrb1 plays a direct role in asymmetric targeting of Vangl2. Finally, Fz3 (Frizzled), a newly demonstrated mediator of PCP, is also asymmetrically localized in a pattern that matches that of Vangl2. The presence and asymmetry of Fz3 at the membrane is shown to be dependent on Vangl2. This result suggests a role for Vangl2 in the targeting or anchoring of Fz3, a hypothesis strengthened by the existence of a physical interaction between the two proteins. Together, our data support the idea that protein asymmetry plays an important role in the development of PCP, but the colocalization and interaction of Fz3 and Vangl2 suggests that novel PCP mechanisms exist in vertebrates.
0
Citation310
0
Save
0

Mapping a multiplexed zoo of mRNA expression

Harry Choi et al.Oct 1, 2016
In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.
0
Citation236
0
Save
0

Fluorescence hybridization chain reaction enables localization of multiple molecular classes combined with plant cell ultrastructure

Yunqing Yu et al.Jan 31, 2024
ABSTRACT Background Recent developments in hybridization chain reaction (HCR) have enabled robust simultaneous localization of multiple mRNA transcripts using fluorescence in situ hybridization (FISH). Once multiple split initiator oligonucleotide probes bind their target mRNA, HCR uses DNA base-pairing of fluorophore-labeled hairpin sets to self-assemble into large polymers, amplifying the fluorescence signal and reducing non-specific background. Few studies have applied HCR in plants, despite its demonstrated utility in whole mount animal tissues and cell culture. Our aim was to optimize this technique for sectioned plant tissues embedded with paraffin and methacrylate resins, and to test its utility in combination with immunolocalization and subsequent correlation with cell ultrastructure using scanning electron microscopy. Results Application of HCR to 10 µm paraffin sections of 17-day-old Setaria viridis (green millet) inflorescences using confocal microscopy revealed that the transcripts of the transcription factor KNOTTED 1 ( KN1 ) were localized to developing floret meristem and vascular tissue while SHATTERING 1 ( SH1 ) and MYB26 transcripts were co-localized to the breakpoint below the floral structures (the abscission zone). We also used methacrylate de-embedment with 1.5 µm and 0.5 µm sections of 3-day-old Arabidopsis thaliana seedlings to show tissue specific CHLOROPHYLL BINDING FACTOR a/b ( CAB1 ) mRNA highly expressed in photosynthetic tissues and ELONGATION FACTOR 1 ALPHA ( EF1 α ) highly expressed in meristematic tissues of the shoot apex. The housekeeping gene ACTIN7 ( ACT7 ) mRNA was more uniformly distributed with reduced signals using lattice structured-illumination microscopy. HCR using 1.5 µm methacrylate sections was followed by backscattered imaging and scanning electron microscopy thus demonstrating the feasibility of correlating fluorescent localization with ultrastructure. Conclusion HCR was successfully adapted for use with both paraffin and methacrylate de-embedment on diverse plant tissues in two model organisms, allowing for concurrent cellular and subcellular localization of multiple mRNAs, antibodies and other affinity probe classes. The mild hybridization conditions used in HCR made it highly amenable to observe immunofluorescence in the same section. De-embedded semi-thin methacrylate sections with HCR were compatible with correlative electron microscopy approaches. Our protocol provides numerous practical tips for successful HCR and affinity probe labeling in electron microscopy-compatible, sectioned plant material.