GV
Georg Vogler
Author with expertise in Diagnosis and Management of Hypertrophic Cardiomyopathy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
7
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Single-cell sequencing of theDrosophilaembryonic heart and muscle cells during differentiation and maturation

Georg Vogler et al.Jan 17, 2021
Abstract The developing Drosophila heart consists of cardioblasts that differentiate into different types of cardiomyocytes and pericardial cells. A large body of work has identified numerous genes and pathways involved in heart specification and differentiation, downstream of cardiac transcription factors, such as Tinman (NKX2-5) and Dorsocross1/2/3 (TBX5). The advent of single-cell RNA sequencing (scRNAseq) technology allowed us for the first time to describe the transcriptome of different cardiac cell types in the Drosophila model at high resolution. Here, we applied scRNAseq on sorted cells of late-stage Drosophila embryos expressing a cardiac GFP reporter. We find distinct expression profiles of cardioblasts as they mature to cardiomyocytes, as well as discretely clustering pericardial cells, including a set expressing Tinman that potentially assist in heart morphogenesis. In addition, we describe other cell types that were sequenced as by-catch due to low but distinct extracardiac expression of the GFP reporter. Our studies on wildtype cardioblasts will be the foundation for investigating developmental profiles in mutant backgrounds and for generating gene regulatory networks at single-cell resolution during cardiogenesis.
7
Citation4
0
Save
4

Identification ofMYOM2as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot and its functional evaluation in theDrosophilaheart

Emilie Auxerre-Plantié et al.Aug 23, 2020
ABSTRACT The causal genetic underpinnings of congenital heart diseases, which are often complex and with multigenic background, are still far from understood. Moreover, there are also predominantly monogenic heart defects, such as cardiomyopathies, with known disease genes for the majority of cases. In this study, we identified mutations in myomesin 2 ( MYOM2 ) in patients with Tetralogy of Fallot (TOF), the most common cyanotic heart malformation, as well as in patients with hypertrophic cardiomyopathy (HCM), who do not exhibit any mutations in the known disease genes. MYOM2 is a major component of the myofibrillar M-band of the sarcomere and a hub gene within interactions of sarcomere genes. We show that patient-derived cardiomyocytes exhibit myofibrillar disarray and reduced passive force with increasing sarcomere lengths. Moreover, our comprehensive functional analyses in the Drosophila animal model reveal that the so far uncharacterized fly gene CG14964 may be an ortholog of MYOM2 , as well as other myosin binding proteins (henceforth named as Drosophila M yomesin a n d M yosin Binding protein (dMnM) ). Its partial loss-of-function or moderate cardiac knockdown results in cardiac dilation, whereas more severely reduced function causes a constricted phenotype and an increase in sarcomere myosin protein. Moreover, compound heterozygous combinations of CG14964 and the sarcomere gene Mhc ( MYH6/7 ) exhibited synergistic genetic interactions. In summary, our results suggest that MYOM2 not only plays a critical role in maintaining robust heart function but may also be a candidate gene for heart diseases such as HCM and TOF, as it is clearly involved in the development of the heart. SUMMARY STATEMENT MYOM2 plays a critical role in establishing or maintaining robust heart function and is a candidate gene for heart diseases such as hypertrophic cardiomyopathy and Tetralogy of Fallot.
4
Citation2
0
Save
1

Genetic architecture of natural variation of cardiac performance: from flies to Humans

Saswati Saha et al.Jun 8, 2021
Abstract Deciphering the genetic architecture of human cardiac disorders is of fundamental importance but their underlying complexity is a major hurdle. We investigated the natural variation of cardiac performance in the sequenced inbred lines of the Drosophila Genetic Reference Panel (DGRP). Genome Wide Associations Studies (GWAS) identified genetic networks associated with natural variation of cardiac traits which were used to gain insights as to the molecular and cellular processes affected. Non-coding variants that we identified were used to map potential regulatory non-coding regions, which in turn were employed to predict Transcription Factors (TFs) binding sites. Cognate TFs, many of which themselves bear polymorphisms associated with variations of cardiac performance, were also validated by heart specific knockdown. Additionally, we showed that the natural variations associated with variability in cardiac performance affect a set of genes overlapping those associated with average traits but through different variants in the same genes. Furthermore, we showed that phenotypic variability was also associated with natural variation of gene regulatory networks. More importantly, we documented correlations between genes associated with cardiac phenotypes in both flies and humans, which supports a conserved genetic architecture regulating adult cardiac function from arthropods to mammals. Specifically, roles for PAX9 and EGR2 in the regulation of the cardiac rhythm were established in both models, illustrating that the characteristics of natural variations in cardiac function identified in Drosophila can accelerate discovery in humans.
1
Citation1
0
Save
0

Patient-specific functional genomics and disease modeling suggest a role for LRP2 in Hypoplastic Left Heart Syndrome

Jeanne Theis et al.Nov 9, 2019
Background: Congenital heart diseases, such as hypoplastic left heart syndrome (HLHS), are considered to have complex genetic underpinnings that are poorly understood. Here, an integrated multi-disciplinary approach was applied to identify novel genes and underlying mechanisms associated with HLHS. Methods: A family-based strategy was employed that coupled whole genome with RNA sequencing of patient-derived induced pluripotent stem cells (iPSCs) from an HLHS proband-parent trio to identify, prioritize and functionally evaluate candidate genes in model systems. Results: Consistent with the hypoplastic phenotype, the proband's iPSCs had reduced proliferation capacity. Mendelian inheritance modeling identified 10 genes with recessive rare variants and altered expression compared to the parents' iPSCs. siRNA/RNAi-mediated knockdown in generic human iPSC-derived cardiac progenitors and in the in vivo Drosophila heart model revealed that LDL receptor related protein LRP2 and apolipoprotein APOB are required for robust hiPSC-derived cardiomyocyte proliferation and Drosophila heart function, respectively, possibly involving an oligogenic mechanism via growth-promoting WNT and SHH signaling. Burden analysis of rare damaging variants in the 2 genes and 80 interacting partners in a cohort of 130 HLHS probands and 861 controls identified significant enrichment in LRP2 (p<0.001), a gene associated with poor clinical outcomes in 30% of cases. Conclusions: Collectively, this cross-functional genetic approach to complex congenital heart disease revealed disruption of LRP2 function as a novel genetic driver of HLHS, and hereby established a scalable approach to decipher the oligogenic underpinnings of maladaptive left heart development.
0

PI(4,5)P2role in Transverse-tubule membrane formation and muscle function

Naonobu Fujita et al.Jan 31, 2024
Abstract Transverse (T)-tubules – vast, tubulated domains of the muscle plasma membrane – are critical to maintain healthy skeletal and heart contractions. How the intricate T-tubule membranes are formed is not well understood, with challenges to systematically interrogate in muscle. We established the use of intact Drosophila larval body wall muscles as an ideal system to discover mechanisms that sculpt and maintain the T-tubule membrane network. A muscle-targeted genetic screen identified specific phosphoinositide lipid regulators necessary for T-tubule organization and muscle function. We show that a PI4KIIIα - Skittles/PIP5K pathway is needed for T-tubule localized PI(4)P to PI(4,5)P 2 synthesis, T-tubule organization, calcium regulation, and muscle and heart rate functions. Muscles deficient for PI4KIIIα or Amphiphysin , the homolog of human BIN1 , similarly exhibited specific loss of transversal T-tubule membranes and dyad junctions, yet retained longitudinal membranes and the associated dyads. Our results highlight the power of live muscle studies, uncovering distinct mechanisms and functions for sub-compartments of the T-tubule network relevant to human myopathy. Summary T-tubules – vast, tubulated domains of the muscle plasma membrane – are critical to maintain skeletal and heart contractions. Fujita et al . establish genetic screens and assays in intact Drosophila muscles that uncover PI(4,5)P 2 regulation critical for T-tubule maintenance and function. Key Findings PI4KIIIα is required for muscle T-tubule formation and larval mobility. A PI4KIIIα-Sktl pathway promotes PI(4)P and PI(4,5)P 2 function at T-tubules. PI4KIIIα is necessary for calcium dynamics and transversal but not longitudinal dyads. Disruption of PI(4,5)P 2 function in fly heart leads to fragmented T-tubules and abnormal heart rate.
1

Nascent Polypeptide Associated Complex–alphaand Signal Recognition Particle are required for cardiac development and remodeling

Analyne Schroeder et al.Jan 24, 2022
ABSTRACT Congenital Heart Disease (CHD) is driven by a strong genetic predisposition, yet only a small subset of patients (∼20%) are diagnosed with a precise genetic cause. Therefore, expanding the pool of genes associated with CHD and establishing the functional relationships between genes can assemble a more comprehensive genetic network to better understand cardiac development and pathogenesis. In our studies, we identified protein biogenesis cofactors Nascent polypeptide Associated Complex (NAC) and Signal Recognition Particle (SRP) that bind disparate subsets of emerging nascent polypeptides at the ribosome exit site to direct polypeptide fates, as novel regulators of cell differentiation and cardiac morphogenesis. Knockdown (KD) of the alpha- (Nacα) or beta- subunit ( bicaudal, bic) of NAC in the developing Drosophila heart led to disruption of cardiac remodeling during pupal stages resulting in an adult fly with no heart. Heart loss was rescued by combined KD of Nacα with the Hox gene Abd-B. Consistent with a central role for this interaction in the regulation of cardiogenesis, KD of Nacα in Cardiac Progenitors derived from human iPSCs impaired cardiac differentiation while co-KD with mammalian Hox genes HOXC12 and HOXD12 rescued this phenotype. The effect of Nacα KD on the fly heart was temporally regulated, in that KD in embryo or in pupae caused only a partial loss of the heart, whereas KD during both stages led to heart loss similar to continuous KD throughout life. This suggests that Nacα KD already in the embryo may reprogram cells leading to aberrant cardiac remodeling during pupal stages. Lastly, KD of several SRP subunits individually in the fly heart produced a range of cardiac phenotypes that targeted specific segments and cell types, indicating spatially regulated activities of SRP components in the heart. Together, these data suggest that despite NAC and SRP ubiquitous presence, they displayed spatially and temporally fine-tuned activities for proper cardiac morphogenesis. Nacα’s interaction with cardiac-specific Hox gene functions builds upon the novel role of this pathway and expands our understanding of the complex genetic networks involved in cardiac development and pathogenesis.
10

Conserved Role of the Large Conductance Calcium-Activated Potassium Channel, KCa1.1, in Sinus Node Function and Arrhythmia Risk

Santiago Pineda et al.Jun 28, 2020
ABSTRACT Background KCNMA1 encodes the α-subunit of the large-conductance Ca 2+ -activated K + channel, K Ca 1.1, and lies within a linkage interval for atrial fibrillation (AF). Insights into the cardiac functions of K Ca 1.1 are limited and KCNMA1 has not been investigated as an AF candidate gene. Methods and Results KCNMA1 sequencing in 118 patients with familial AF identified a novel complex variant in one kindred. To evaluate potential disease mechanisms, we first evaluated the distribution of K Ca 1.1 in normal hearts using immunostaining and immunogold electron microscopy. K Ca 1.1 was seen throughout the atria and ventricles in humans and mice, with strong expression in the sinus node. In an ex vivo murine sinoatrial node preparation, addition of the K Ca 1.1 antagonist, paxilline, blunted the increase in beating rate induced by adrenergic receptor stimulation. Knockdown of the K Ca 1.1 ortholog, kcnma1b , in zebrafish embryos resulted in sinus bradycardia with dilatation and reduced contraction of the atrium and ventricle. Genetic inactivation of the Drosophila K Ca 1.1 ortholog, slo , systemically or in adult stages, also slowed the heartbeat and produced cardiac arrhythmias. Electrophysiological characterization of slo- deficient flies revealed bursts of action potentials, reflecting increased events of fibrillatory arrhythmias. Flies with cardiac-specific overexpression of the human KCNMA1 mutant also showed increased heart period and bursts of action potentials, similar to the K Ca 1.1 loss-of-function models. Conclusions Our data point to a highly conserved role of K Ca 1.1 in sinus node function in humans, mice, zebrafish and fly and suggest that K Ca 1.1 loss of function may predispose to AF.
0

A single DPE core promoter motif contributes toin vivotranscriptional regulation and affects cardiac function

Anna Sloutskin et al.Jun 12, 2023
Transcription is initiated at the core promoter, which confers specific functions depending on the unique combination of core promoter elements. The downstream core promoter element (DPE) is found in many genes related to heart and mesodermal development. However, the function of these core promoter elements has thus far been studied primarily in isolated, in vitro or reporter gene settings. tinman (tin) encodes a key transcription factor that regulates the formation of the dorsal musculature and heart. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show that a substitution mutation of the functional tin DPE motif within the natural context of the core promoter results in a massive perturbation of Tinman's regulatory network orchestrating dorsal musculature and heart formation. Mutation of endogenous tin DPE reduced the expression of tin and distinct target genes, resulting in significantly reduced viability and an overall decrease in adult heart function. We demonstrate the feasibility and importance of characterizing DNA sequence elements in vivo in their natural context, and accentuate the critical impact a single DPE motif has during Drosophila embryogenesis and functional heart formation.
1

The nutrient sensor CRTC & Sarcalumenin / Thinman represent a new pathway in cardiac hypertrophy

Cristiana Dondi et al.Oct 2, 2023
ABSTRACT Obesity and type 2 diabetes are at epidemic levels and a significant proportion of these patients are diagnosed with left ventricular hypertrophy. CREB R egulated T ranscription C o-activator ( CRTC ) is a key regulator of metabolism in mammalian hepatocytes, where it is activated by calcineurin (CaN) to increase expression of gluconeogenic genes. CaN is known its role in pathological cardiac hypertrophy, however, a role for CRTC in the heart has not been identified. In Drosophila , CRTC null mutants have little body fat and exhibit severe cardiac restriction, myofibrillar disorganization, cardiac fibrosis and tachycardia, all hallmarks of heart disease. Cardiac-specific knockdown of CRTC , or its coactivator CREBb , mimicked the reduced body fat and heart defects of CRTC null mutants. Comparative gene expression in CRTC loss- or gain-of-function fly hearts revealed contra-regulation of genes involved in glucose, fatty acid, and amino acid metabolism, suggesting that CRTC also acts as a metabolic switch in the heart. Among the contra-regulated genes with conserved CREB binding sites, we identified the fly ortholog of Sarcalumenin, which is a Ca 2+ -binding protein in the sarcoplasmic reticulum. Cardiac knockdown recapitulated the loss of CRTC cardiac restriction and fibrotic phenotypes, suggesting it is a downstream effector of CRTC we named thinman ( tmn ). Importantly, cardiac overexpression of either CaN or CRTC in flies caused hypertrophy that was reversed in a CRTC mutant background, suggesting CRTC mediates hypertrophy downstream of CaN, perhaps as an alternative to NFAT. CRTC novel role in the heart is likely conserved in vertebrates as knockdown in zebrafish also caused cardiac restriction, as in fl ies. These data suggest that CRTC is involved in myocardial cell maintenance and that CaN-CRTC- Sarcalumenin/ tmn signaling represents a novel and conserved pathway underlying cardiac hypertrophy.