KB
Katiuscia Bianchi
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
2,929
h-index:
23
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0
0

Metabolic remodelling in hiPSC-derived myofibres carrying the m.3243A>G mutation

Gabriel Valdebenito et al.Jun 13, 2024
Summary Mutations in mitochondrial DNA cause severe multisystem disease, frequently associated with muscle weakness. The m.3243A>G mutation is the major cause of Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke Like episodes (MELAS). Experimental models that recapitulate the disease phenotype in vitro for disease modelling or drug screening are very limited. We have therefore generated hiPSC-derived muscle fibres with variable heteroplasmic mtDNA mutation load without significantly affecting muscle differentiation potential. The cells are excitable and show physiological characteristics of muscle fibres and show well organised myofibrillar structure. In cells carrying the m.3243A>G, the mitochondrial membrane potential and oxygen consumption were reduced in relation to the mutant load. We have shown through proteomic, phosphoproteomic, and metabolomic analyses that the m.3243A>G mutation variably affects the cell phenotype in relation to the mutant load. This variation is reflected by an increase in the NADH/NAD + ratio, which in turns influences key nutrient-sensing pathways in the myofibres. This model enables detailed study of the impact of the mutation on cellular bioenergetics and on muscle physiology with the potential to provide a platform for drug screening.
0

The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism

Ruoyan Xu et al.Nov 26, 2019
The IκB kinase ε (IKKε) is a key molecule at the crossroads of inflammation and cancer. Known for its role as an activator of NFκB and IRF3 signalling leading to cytokine secretion, the kinase is also a breast cancer oncogene, overexpressed in a variety of tumours. However, to what extent IKKε remodels cellular metabolism is currently unknown. Here we used a combination of metabolomics and phosphoproteomics to show that IKKε orchestrates a complex metabolic reprogramming that affects mitochondrial metabolism and serine biosynthesis. Acting independently of its canonical signalling role, IKKε upregulates the serine biosynthesis pathway (SBP) mainly by limiting glucose and pyruvate derived anaplerosis of the TCA cycle. In turn, this elicits activation of the transcription factor ATF4 and upregulation of the SBP genes. Importantly, pharmacological inhibition of the IKKε-induced metabolic phenotype reduces proliferation of breast cancer cells. Finally, we show that in a set of basal ER negative and highly proliferative human breast cancer tumours, IKKε and PSAT1 expression levels are positively correlated corroborating the link between IKKε and the SBP in the clinical context.
0

Pyruvate metabolism dictates fibroblast sensitivity to GLS1 inhibition during fibrogenesis

Greg Contento et al.Feb 1, 2024
Abstract Fibrosis is a chronic disease characterized by excessive extracellular matrix (ECM) production which leads to destruction of normal tissue architecture and disruption of organ function. Fibroblasts are key effector cells of this process and respond to a host of pro-fibrotic stimuli, including notably the pleiotropic cytokine, TGF-β 1 , which promotes fibroblast to myofibroblast differentiation. This is accompanied by the simultaneous rewiring of metabolic networks to meet the biosynthetic and bioenergetic needs of contractile and ECM-synthesizing cells, but the exact mechanisms involved remain poorly understood. In this study, we report that extracellular nutrient availability profoundly influences the TGF-β 1 transcriptome of primary human lung fibroblasts (pHLFs) and the “biosynthesis of amino acids” emerges as a top enriched transcriptional module influenced by TGF-β 1 . We subsequently uncover a key role for pyruvate in influencing the pharmacological impact of glutaminase (GLS1) inhibition during TGF-β 1 -induced fibrogenesis. In pyruvate replete conditions which mimic the physiological concentration of pyruvate in human blood, GLS1 inhibition is ineffective in blocking TGF-β 1 -induced fibrogenesis, as pyruvate is able to be used as the substrate for glutamate and alanine production via glutamate dehydrogenase (GDH) and glutamic-pyruvic transaminase 2 (GPT2), respectively. We further show that dual targeting of either GPT2 or GDH in combination with GLS1-inhibition is required to fully block TGF-β 1 -induced collagen synthesis. These findings embolden a therapeutic strategy aimed at additional targeting of mitochondrial pyruvate metabolism in the presence of a glutaminolysis inhibitor in order to interfere with the pathological deposition of collagen in the setting of pulmonary fibrosis and potentially other fibrotic conditions.