JK
James Knierim
Author with expertise in Neural Mechanisms of Memory Formation and Spatial Navigation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(79% Open Access)
Cited by:
5,348
h-index:
50
/
i10-index:
72
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neuronal responses to static texture patterns in area V1 of the alert macaque monkey

James Knierim et al.Apr 1, 1992
1. We recorded responses from neurons in area V1 of the alert macaque monkey to textured patterns modeled after stimuli used in psychophysical experiments of pop-out. Neuronal responses to a single oriented line segment placed within a cell's classical receptive field (CRF) were compared with responses in which the center element was surrounded by rings of elements placed entirely outside the CRF. The orientations of the surround elements either matched the center element, were orthogonal to it, or were random. 2. The addition of the textured surround tended to suppress the response to the center element by an average of 34%. Overall, almost 80% of the 122 cells analyzed in detail were significantly suppressed by at least one of the texture surrounds. 3. Cells tended to respond more strongly to a stimulus in which there was a contrast in orientation between the center and surround than to a stimulus lacking such contrast. The average difference was 9% of the response to the optimally oriented center element alone. For the 32% of the cells showing a statistically significant orientation contrast effect, the average difference was 28%. 4. Both the general suppression and orientation contrast effects originated from surround regions at the ends of the center bar as well as regions along the sides of the center bar. 5. The amount of suppression induced by the texture surround decreased as the density of the texture elements decreased. 6. Both the general suppression and the orientation contrast effects appeared early in the population response to the stimuli. The general suppression effect took approximately 7 ms to develop, whereas the orientation contrast effect took 18-20 ms to develop. 7. These results are consistent with a possible functional role of V1 cells in the mediation of perceptual pop-out and in the segregation of texture borders. Possible anatomic substrates of the effects are discussed.
0

Place cells, head direction cells, and the learning of landmark stability

James Knierim et al.Mar 1, 1995
Previous studies have shown that hippocampal place fields are controlled by the salient sensory cues in the environment, in that rotation of the cues causes an equal rotation of the place fields. We trained rats to forage for food pellets in a gray cylinder with a single salient directional cue, a white card covering 90 degrees of the cylinder wall. Half of the rats were disoriented before being placed in the cylinder, in order to disrupt their internal sense of direction. The other half were not disoriented before being placed in the cylinder; for these rats, there was presumably a consistent relationship between the cue card and their internal direction sense. We subsequently recorded hippocampal place cells and thalamic head direction cells from both groups of rats as they moved in the cylinder; between some sessions the cylinder and cue card were rotated to a new direction. All rats were disoriented before recording. Under these conditions, the cue card had much weaker control over the place fields and head direction cells in the rats that had been disoriented during training than in the rats that had not been disoriented. For the former group, the place fields often rotated relative to the cue card or completely changed their firing properties between sessions. In all recording sessions, the head direction cells and place cells were strongly coupled. It appears that the strength of cue control over place cells and head direction cells depends on the rat's learned perception of the stability of the cues.
0

Influence of boundary removal on the spatial representations of the medial entorhinal cortex

Francesco Savelli et al.Nov 19, 2008
Abstract The medial entorhinal cortex (MEC) is thought to create and update a dynamical representation of the animal's spatial location. Most suggestive of this process are grid cells, whose firing locations occur periodically in space. Prior studies in small environments were ambiguous as to whether all spatially modulated cells in MEC were variants of grid cells or whether a subset resembled classic place cells of the hippocampus. Recordings from the dorsal and ventral MEC were performed as four rats foraged in a small square box centered inside a larger one. After 6 min, without removing the rat from the enclosure, the walls of the small box were quickly removed, leaving the rat free to continue foraging in the whole area enclosed by the larger box. The rate‐responses of most recorded cells (70 out of 93 cells, including 15 of 16 putative interneurons) were considered spatially modulated based on information‐theoretic analysis. A number of cells that resembled classic hippocampal place cells in the small box were revealed to be grid cells in the larger box. In contrast, other cells that fired along the boundaries or corners of the small box did not show grid‐cell firing in the large box, but instead fired along the corresponding locations of the large box. Remapping of the spatial response in the area corresponding to the small box after the removal of its walls was prominent in most spatially modulated cells. These results show that manipulation of local boundaries can exert a powerful influence on the spatial firing patterns of MEC cells even when the manipulations leave global cues unchanged and allow uninterrupted, self‐motion‐based localization. Further, they suggest the presence of landmark‐related information in MEC, which might prevent cumulative drift of the spatial representation or might reset it to a previously learned configuration in a familiar environment. © 2008 Wiley‐Liss, Inc.
Load More