YR
Yi Ren
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
1,267
h-index:
23
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Treatment with convalescent plasma for COVID‐19 patients in Wuhan, China

Mingxiang Ye et al.Apr 15, 2020
Abstract The discovery of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and the outbreak of coronavirus disease 2019 (COVID‐19) are causing public health emergencies. A handful pieces of literature have summarized its clinical and radiologic features, whereas therapies for COVID‐19 are rather limited. To evaluate the efficacy of convalescent plasma therapy in COVID‐19 patients, we did this timely descriptive study. Six laboratory‐confirmed COVID‐19 patients were enrolled and received the transfusion of ABO‐compatible convalescent plasma. The efficacy of this intervention was determined by the alleviation of symptoms, changes in radiologic abnormalities and laboratory tests. No obvious adverse effect observed during the treatment. Transfusion of convalescent plasma led to a resolution of ground‐glass opacities and consolidation in patients #1, #2, #3, #4, and #6. In patients #1 and #5 who presented with SARS‐CoV‐2 in throat swab, convalescent plasma therapy elicited an elimination of the virus. Serologic analysis indicated an immediate increase in anti‐SARS‐CoV‐2 antibody titers in patients #2 and #3, but not in patient #1. This study indicates that convalescent plasma therapy is effective and specific for COVID‐19. This intervention has a special significance for eliminating SARS‐CoV‐2 and is believed to be a promising state‐of‐the‐art therapy during COVID‐19 pandemic crisis.
0
Citation406
0
Save
0

Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events

Junxian Ou et al.Apr 26, 2022
Abstract The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, 18 core mutations of BA.1 (frequency >99%) and 27 core mutations of BA.2 (nine more than BA.1) were identified, of which 15 are specific to Omicron. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations in BA.1 than BA.2, and BA.1 is phylogenetically closer to Alpha than other variants. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1. Most notably, multiple characteristic amino acid mutations in the Delta spike protein have been also identified in the “Deltacron”-like Omicron Variants isolated since November 11, 2021 in South Africa, which implies the recombination events occurring between the Omicron and Delta variants. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.
0
Citation185
0
Save
81

Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events

Junxian Ou et al.Mar 14, 2022
Abstract The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. Although recombination events among SARS-CoV-1 and MERS-CoV were well-documented, it has been difficult to detect the recombination signatures in SARS-CoV-2 variants due to their high degree of sequence similarity. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, eighteen core mutations of BA.1 variants (frequency >99%) were identified (eight in NTD, five near the S1/S2 cleavage site, and five in S2). BA.2 variants share three additional amino acid deletions with the Alpha variants. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations (del69-70, del144) in BA.1 than BA.2, and therefore BA.1 may be phylogenetically closer to the Alpha variant. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1 subvariant. Most notably, multiple additional amino acid mutations in the Delta spike protein were also identified in the recently emerged Omicron isolates, which implied possible recombination events occurred between the Omicron and Delta variants during the on-going pandemic. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.
81
Citation4
0
Save
0

Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through multiple mechanisms

Pan Liu et al.Jan 30, 2024
SUMMARY Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity could be recovered in the presence of heparin sulfate, which targets the “N354 pocket” to ease restrictions of conformational transition resulting in a “RBD-up” state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms. HIGHLIGHTS N354 glycosylation acts as a conformational control element to modulate infectivity Reduced infectivity could be recovered by altered binding mode of heparin sulfate N354 glycosylation improved fusogenicity and conferred escape from ADCC antibodies N354 glycosylation reduced immunogenicity and conferred immune evasion
0
Citation2
0
Save