MA
Michael Adams
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(44% Open Access)
Cited by:
2,150
h-index:
93
/
i10-index:
421
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

Greg Hura et al.Jul 20, 2009
+12
M
A
G
We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.
0

High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus

Kelly Lundberg et al.Dec 1, 1991
+3
M
D
K
A thermostable DNA polymerase which possesses an associated 3'-to-5' exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10% of the number of mutations obtained from similar amplifications performed with Taq DNA polymerase. The PCR fidelity assay is based on the amplification and cloning of lacI, lacO and lacZα gene sequences (lacIOZα) using either Pfu or Taq DNA polymerase. Certain mutations within the lacI gene inactivate the Lac repressor protein and permit the expression of βGal. When plated on a chromogenic substrate, these LacI− mutants exhibit a blue-plaque phenotype. These studies demonstrate that the error rate per nucleotide induced in the 182 known detectable sites of the lacI gene was 1.6 × 10−6 for Pfu DNA polymerase, a greater than tenfold improvement over the 2.0 × 10−5 error rate for Taq DNA polymerase, after approx. 105-fold amplification.
0
Citation560
0
Save
0

Structure of a Hyperthermophilic Tungstopterin Enzyme, Aldehyde Ferredoxin Oxidoreductase

Michael Chan et al.Mar 10, 1995
+2
A
S
M
The crystal structure of the tungsten-containing aldehyde ferredoxin oxidoreductase (AOR) from Pyrococcus furiosus , a hyperthermophilic archaeon (formerly archaebacterium) that grows optimally at 100°C, has been determined at 2.3 angstrom resolution by means of multiple isomorphous replacement and multiple crystal form averaging. AOR consists of two identical subunits, each containing an Fe 4 S 4 cluster and a molybdopterin-based tungsten cofactor that is analogous to the molybdenum cofactor found in a large class of oxotransferases. Whereas the general features of the tungsten coordination in this cofactor were consistent with a previously proposed structure, each AOR subunit unexpectedly contained two molybdopterin molecules that coordinate a tungsten by a total of four sulfur ligands, and the pterin system was modified by an intramolecular cyclization that generated a three-ringed structure. In comparison to other proteins, the hyperthermophilic enzyme AOR has a relatively small solvent-exposed surface area, and a relatively large number of both ion pairs and buried atoms. These properties may contribute to the extreme thermostability of this enzyme.
0

The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production

Gerrit Schut et al.May 2, 2009
M
G
ABSTRACT The hyperthermophilic and anaerobic bacterium Thermotoga maritima ferments a wide variety of carbohydrates, producing acetate, CO 2 , and H 2 . Glucose is degraded through a classical Embden-Meyerhof pathway, and both NADH and reduced ferredoxin are generated. The oxidation of these electron carriers must be coupled to H 2 production, but the mechanism by which this occurs is unknown. The trimeric [FeFe]-type hydrogenase that was previously purified from T. maritima does not use either reduced ferredoxin or NADH as a sole electron donor. This problem has now been resolved by the demonstration that this hydrogenase requires the presence of both electron carriers for catalysis of H 2 production. The enzyme oxidizes NADH and ferredoxin simultaneously in an approximately 1:1 ratio and in a synergistic fashion to produce H 2 . It is proposed that the enzyme represents a new class of bifurcating [FeFe] hydrogenase in which the exergonic oxidation of ferredoxin (midpoint potential, −453 mV) is used to drive the unfavorable oxidation of NADH ( E 0 ′ = −320 mV) to produce H 2 ( E 0 ′ = −420 mV). From genome sequence analysis, it is now clear that there are two major types of [FeFe] hydrogenases: the trimeric bifurcating enzyme and the more well-studied monomeric ferredoxin-dependent [FeFe] hydrogenase. Almost one-third of the known H 2 -producing anaerobes appear to contain homologs of the trimeric bifurcating enzyme, although many of them also harbor one or more homologs of the simpler ferredoxin-dependent hydrogenase. The discovery of the bifurcating hydrogenase gives a new perspective on our understanding of the bioenergetics and mechanism of H 2 production and of anaerobic metabolism in general.
0

In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations.

Regina Wilpiszeski et al.Apr 16, 2020
+15
C
A
R
Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.
0

Genomic and environmental controls onCastellaniellabiogeography in an anthropogenically disturbed subsurface

Jennifer Goff et al.Feb 4, 2024
+13
K
E
J
ABSTRACT Castellaniella species have been isolated from a variety of mixed-waste environments including the nitrate and multiple metal contaminated subsurface at the Oak Ridge Reservation (ORR). Previous studies examining microbial community composition and nitrate removal at ORR during biostimulation efforts reported increased abundances of members of the Castellaniella genus concurrent to increased denitrification rates. Thus, we asked how genomic and abiotic factors control the Castellaniella biogeography at the site to understand how these factors may influence nitrate transformation in an anthropogenically impacted setting. ORR Castellaniella strains showed a higher degree of genetic diversification than those originating from non-ORR sites, which we attribute to the multitude of extreme stressors faced in the ORR subsurface. We report the isolation and characterization of several Castellaniella strains from the ORR subsurface. Five of these isolates match at 100% identity (at the 16S rRNA gene V4 region) to two Castellaniella amplicon sequence variants (ASVs), ASV1 and ASV2, that have persisted in the ORR subsurface for at least two decades. However, ASV2 has consistently higher relative abundance in samples taken from the site and was also the dominant blooming denitrifier population during a prior biostimulation effort. We found that the ASV2 representative strain has greater resistance to mixed metal stress than the ASV1 representative strains. We attribute this resistance, in part, to the large number of unique heavy metal resistance genes identified on a genomic island in the ASV2 representative genome. Additionally, we suggest that the relatively lower fitness of ASV1 may be connected to the loss of the nitrous oxide reductase ( nos ) operon (and associated nitrous oxide reductase activity) due to the insertion at this genomic locus of a mobile genetic element carrying copper resistance genes. This study demonstrates the value of integrating genomic, environmental, and phenotypic data to characterize the biogeography of key microorganisms in contaminated sites.
0

Integrated characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer

Ji‐Won Moon et al.Jul 24, 2019
+31
M
D
J
The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated environments. To provide site assessment for a larger study, we processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater from the ENIGMA Field Research Site at the United States Department of Energy (DOE) Oak Ridge Reservation (ORR). We compared fresh core sediments by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including contaminants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. This environmental systems approach provided detailed site-specific biogeochemical information from the various properties of subsurface media to reveal the influences of solid, liquid, and gas phases. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate- reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. This suggested that groundwater predominantly flowed through preferential paths with high flux and little mixing with water in the interstices of sediment particles, which could impact microbial activity. The abundant clay minerals with high surface area and high water-holding capacity of micro-pores of the fine clay rich layer suggest suppression of nutrient supply to microbes from the surface. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of highly toxic elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.
0

Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species

Laura Lee et al.Jun 30, 2018
+6
В
W
L
Genomes of extremely thermophilic Caldicellulosiruptorspecies encode novel cellulose binding proteins, tāpirins, located proximate to the type IV pilus locus. Previously, the C-terminal domain of a tāpirin (Calkro_0844) from Caldicellulosiruptor kronotskyensiswas shown to be structurally unique and have a cellulose binding affinity akin to family 3 carbohydrate binding modules (CBM3). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii(Athe_1870), Caldicellulosiruptor hydrothermalis(Calhy_0908), Caldicellulosiruptor kristjanssonii(Calkr_0826), and Caldicellulosiruptor naganoensis(NA10_0869) were produced recombinantly in Escherichia coliand compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, filter paper, but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844 and NA10_0869 (from strongly cellulolytic species), perhaps to associate closely with biomass to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Three-dimensional structures of the C-terminal binding regions of Calhy_0908 and Calkr_0826 were closely related to Calkro_0844, despite the fact that their amino acid sequence identities compared to Calkro_0844 were only 16% and 36%, respectively. Unlike the parent strain, C. bescii mutants lackingthe t?pirin genes did not bind to cellulose following short-term incubation, reinforcing the significance of these proteins in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help cells scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptorspecies.
7

Mixed Heavy Metals Stress Induces Global Iron Starvation as Revealed by System Level Multi-Omic Analyses

Jennifer Goff et al.Aug 5, 2022
+6
M
Y
J
ABSTRACT Globally, multiple heavy metal contamination is an increasingly common problem. As heavy metals have the potential to disrupt microbially-mediated biogeochemical cycling, it is critical to understand their impact on microbial physiology. However, systems-level studies on the effects of a combination of heavy metals on bacteria are lacking. Here, we use a native Bacillus cereus isolate from the subsurface of the Oak Ridge Reservation (ORR; Oak Ridge, TN, USA) — representing a highly abundant species at the site— to assess the combined impact of eight metal contaminants. Using this metal mixture and individual metals, all at concentrations based on the ORR site geochemistry, we performed growth experiments and proteomic analyses of the B. cereus strain, in combination with targeted MS-based metabolomics and gene expression profiling. The combination of eight metals impacts cell physiology in a manner that could not have been predicted from summing phenotypic responses to the individual metals. Specifically, exposure to the metal mixture elicited global iron starvation responses not observed in any of the individual metal treatments. As nitrate is also a significant contaminant at the ORR site and nitrate and nitrite reductases are iron-containing enzymes, we also examined the effects of the metal mixture on reduction of nitrogen oxides. We found that the metal mixture inhibits the activity of these enzymes through a combination of direct enzymatic damage and post-transcriptional and post-translational regulation. Altogether, these data suggest that metal mixture studies are critical for understanding how multiple rather than individual metals influence microbial processes in the environment.