BW
Brian Wilkinson
Author with expertise in Methicillin-Resistant Staphylococcus aureus Infections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
268
h-index:
54
/
i10-index:
146
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Synthetic Lethal Compound Combinations Reveal a Fundamental Connection between Wall Teichoic Acid and Peptidoglycan Biosyntheses in Staphylococcus aureus

Jennifer Campbell et al.Oct 20, 2010
Methicillin resistance in Staphylococcus aureus depends on the production of mecA, which encodes penicillin-binding protein 2A (PBP2A), an acquired peptidoglycan transpeptidase (TP) with reduced susceptibility to β-lactam antibiotics. PBP2A cross-links nascent peptidoglycan when the native TPs are inhibited by β-lactams. Although mecA expression is essential for β-lactam resistance, it is not sufficient. Here we show that blocking the expression of wall teichoic acids (WTAs) by inhibiting the first enzyme in the pathway, TarO, sensitizes methicillin-resistant S. aureus (MRSA) strains to β-lactams even though the β-lactam-resistant transpeptidase, PBP2A, is still expressed. The dramatic synergy between TarO inhibitors and β-lactams is noteworthy not simply because strategies to overcome MRSA are desperately needed but because neither TarO nor the activities of the native TPs are essential in MRSA strains. The "synthetic lethality" of inhibiting TarO and the native TPs suggests a functional connection between ongoing WTA expression and peptidoglycan assembly in S. aureus. Indeed, transmission electron microscopy shows that S. aureus cells blocked in WTA synthesis have extensive defects in septation and cell separation, indicating dysregulated cell wall assembly and degradation. Our studies imply that WTAs play a fundamental role in S. aureus cell division and raise the possibility that synthetic lethal compound combinations may have therapeutic utility for overcoming antibiotic-resistant bacterial infections.
0
Citation268
0
Save
0

Lipidomics of homeoviscous adaptation to low temperatures in Staphylococcus aureus utilizing exogenous straight-chain unsaturated fatty acids over biosynthesized endogenous branched-chain fatty acids

Shannon Barbarek et al.Feb 3, 2024
It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media, and when growing in vivo in an infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12 o C. Interestingly, we found similar results in the BCFA-sufficient parental strain. We show that incorporation of C18:1Δ9 and its elongation product C20:1Δ9 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol (PG) and diglycosyldiacylglycerol (DGDG) lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12 o C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin; however, this was not an obligatory requirement for cold adaptation. Enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms.
0

Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids

Suranjana Sen et al.Apr 5, 2016
The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in strains USA300 and SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when the organism was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum. The fatty acid composition of in vitro grown S. aureus is likely to be a poor reflection of the fatty acid composition and biophysical properties of the membrane when the organism is growing in an infection in view of the role of SCUFAs in staphylococcal membrane composition and virulence.
0

Lipidomic and Ultrastructural Characterization of Cell Envelope of Staphylococcus aureus Grown in the Presence of Human Serum

Kelly Hines et al.Apr 10, 2020
Staphylococcus aureus can incorporate exogenous straight-chain unsaturated and saturated fatty acids (SCUFAs and SCFAs, respectively) to replace some of the normally biosynthesized branched-chain fatty acids and SCFAs. In this study, the impact of human serum on the S. aureus lipidome and cell envelope structure was comprehensively characterized. When grown in the presence of 20% human serum, typical human serum lipids, such as cholesterol, sphingomyelin, phosphatidylethanolamines, and phosphatidylcholines, were present in the total lipid extracts. Mass spectrometry showed that SCUFAs were incorporated into all major S. aureus lipid classes, i.e., phosphatidylglycerols, lysyl-phosphatidylglycerols, cardiolipins, and diglucosyldiacylglycerols. Heat-killed S. aureus retained much fewer serum lipids and failed to incorporate SCUFAs, suggesting that association and incorporation of serum lipids with S. aureus requires a living or non-denatured cell. Cytoplasmic membranes isolated from lysostaphin-produced protoplasts of serum-grown cells retained serum lipids, but washing cells with Triton X-100 removed most of them. Furthermore, electron microscopy studies showed that serum-grown cells had thicker cell envelopes and associated material on the surface, which was partially removed by Triton X-100 washing. To investigate which serum lipids were preferentially hydrolyzed by S. aureus lipases for incorporation, we incubated individual serum lipid classes with S. aureus and found that cholesteryl esters (CEs) and triglycerides (TGs) are the major donors of the incorporated fatty acids. Further experiments using purified Geh lipase confirmed CEs and TGs being the substrates of this enzyme. Thus, growth in the presence of serum altered the nature of the cell surface with implications for interactions with the host.### Competing Interest Statement
0

Growth of Staphylococcus aureus in the presence of oleic acid shifts the glycolipid fatty acid profile and increases resistance to antimicrobial peptides

Desanka Raskovic et al.May 5, 2024
Staphylococcus aureus readily adapts to various environments and quickly develops antibiotic resistance, which has led to an increase in multidrug-resistant infections. Hence, S. aureus presents a significant global health issue and its its adaptations to the host environment are crucial for understanding pathogenesis and antibiotic susceptibility. When S. aureus is grown conventionally, its membrane lipids contain a mix of branched-chain and straight-chain saturated fatty acids. However, when unsaturated fatty acids are present in the growth medium, they become a major part of the total fatty acid composition. This study explores the biophysical effects of incorporating straight-chain unsaturated fatty acids into S. aureus membrane lipids. Membrane preparations from cultures supplemented with oleic acid showed more complex differential scanning calorimetry scans than those grown in tryptic soy broth alone. When grown in the presence of oleic acid, the cultures exhibited a transition significantly above the growth temperature, attributed to the presence of glycolipids with long-chain fatty acids causing acyl chain packing frustration within the bilayer. Functional aspects of the membrane were assessed by studying the kinetics of dye release from unilamellar vesicles induced by the antimicrobial peptide mastoparan X. Dye release was slower from liposomes prepared from cells grown in oleic acid-supplemented cultures, suggesting that changes in membrane lipid composition and biophysics protect the cell membrane against peptide-induced lysis. These findings underscore the intricate relationship between the growth environment, membrane lipid composition, and the physical properties of the bacterial membrane, which should be considered when developing new strategies against S. aureus infections.
1

Increased membrane fluidity and cell wall thickening contribute to high-level daptomycin resistance in S. aureus with defective pgsA and yycG

C. Freeman et al.Apr 11, 2023
Daptomycin is an important, last-resort antimicrobial therapeutic for the treatment of infections caused by Staphylococcus aureus that has acquired β-lactam nonsusceptibility or reduced vancomycin susceptibility. The mechanism of action of daptomycin involves disruption of the cell membrane rather than cell wall synthesis, as with β -lactams and vancomycin. In the rare event of failed daptomycin therapy, the source of resistance is often attributable to single-nucleotide polymorphisms directly within the membrane phospholipid biosynthetic pathway of S. aureus or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant strain selected from methicillin-resistant S. aureus (MRSA) N315 with mutations in the most commonly reported SNPs associated with daptomycin-resistance: mprF, yycG , and pgsA . In addition to the decreased phosphatidylglycerol (PG) levels that are the hallmark of daptomycin-resistance, the mutant with high-level daptomycin resistance had increased branched-chain fatty acids (BCFAs) in its membrane lipids, increased membrane fluidity, and increased cell wall thickness relative to its parental strain. Despite the enrichment of BCFAs, we found that the daptomycin-resistant strain successfully utilized isotope-labeled straight-chain fatty acids (SCFAs) in the synthesis of membrane lipids and that supplementation of the culture broth with SCFAs restored membrane fluidity in the daptomycin-resistant strain to the state of its parental strain. These results demonstrate that exogenous fatty acids can mitigate, in part, the phenotypes associated with daptomycin resistance when it is driven by mutations in yycG and pgsA .The cationic lipopeptide antimicrobial daptomycin has become an essential tool for combating infections with Staphylococcus aureus that display reduced susceptibility to beta lactams or vancomycin. Since the mechanism of daptomycin's activity is based on interaction with the negatively charged membrane of S. aureus, the most commonly detected routes to daptomycin-resistance occur through SNPs in the lipid biosynthetic pathway surround phosphatidylglycerols and regulatory system that control cell envelope homeostasis. We demonstrate that a strain of MRSA N315 with high-level daptomycin resistance due to mutations in pgsA, yycG , and mprF has aberrantly high membrane fluidity and thickened cell. These phenotypes can be reserved upon supplementation of the culture broth with exogenous SCFAs through their incorporation through the FakA pathway. Our results give premise to the concept that targeted remodeling of the staphylococcal membrane may be an advantageous strategy to restore daptomycin susceptibility.