OV
Omid Veiseh
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(85% Open Access)
Cited by:
6,419
h-index:
48
/
i10-index:
68
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates

Omid Veiseh et al.May 18, 2015
The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions. Implanted spheres of a broad variety of material classes significantly abrogate foreign body reactions and fibrosis in rodent and non-human primates when the spheres are larger than 1.5 mm in diameter.
0
Citation744
0
Save
0

Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice

Arturo Vegas et al.Jan 25, 2016
When encapsulated with alginate derivatives that resist the foreign-body response, human embryonic stem cell–derived beta cells restore long-term normoglycemia in immunocompetent mice without the need for immunosuppression. The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes1. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically2, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue3. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-β cells), which may represent an unlimited source of human cells for pancreas replacement therapy4. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier5,6. However, clinical implementation has been challenging because of host immune responses to the implant materials7. Here we report the first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-β cells. SC-β cells were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin, which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.
0
Citation610
0
Save
0

Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity

Kathryn Whitehead et al.Jun 27, 2014
One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure–function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg−1). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing. Robust and reliable structure–function relationships are valuable for the development of potent drug delivery systems. Here, the authors use a library of lipid-like materials to predict in vivosiRNA delivery efficacy without any biological testing.
0

Self-assembled hydrogels utilizing polymer–nanoparticle interactions

Eric Appel et al.Feb 19, 2015
Mouldable hydrogels that flow on applied stress and rapidly self-heal are increasingly utilized as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer–nanoparticle (NP) interactions. Biopolymer derivatives are linked together by selective adsorption to NPs. The transient and reversible interactions between biopolymers and NPs enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer–NP gel formation that is utilized to design biocompatible gels for drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications. Mouldable hydrogels find a variety of applications in the biomedical industry. Here, Appel et al. show a method to fabricate hydrogels through a self-assembly process based on the interaction between biopolymers and functional nanoparticles for multistage drug delivery in vivo.
0

PEI–PEG–Chitosan‐Copolymer‐Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection

Forrest Kievit et al.May 21, 2009
Abstract Gene therapy offers the potential of mediating disease through modification of specific cellular functions of target cells. However, effective transport of nucleic acids to target cells with minimal side effects remains a challenge despite the use of unique viral and non‐viral delivery approaches. Here, a non‐viral nanoparticle gene carrier that demonstrates effective gene delivery and transfection both in vitro and in vivo is presented. The nanoparticle system (NP–CP–PEI) is made of a superparamagnetic iron oxide nanoparticle (NP), which enables magnetic resonance imaging, coated with a novel copolymer (CP–PEI) comprised of short chain polyethylenimine (PEI) and poly(ethylene glycol) (PEG) grafted to the natural polysaccharide, chitosan (CP), which allows efficient loading and protection of the nucleic acids. The function of each component material in this nanoparticle system is illustrated by comparative studies of three nanoparticle systems of different surface chemistries, through material property characterization, DNA loading and transfection analyses, and toxicity assessment. Significantly, NP–CP–PEI demonstrates an innocuous toxic profile and a high level of expression of the delivered plasmid DNA in a C6 xenograft mouse model, making it a potential candidate for safe in vivo delivery of DNA for gene therapy.
0
Citation363
0
Save
0

Specific Targeting of Brain Tumors with an Optical/Magnetic Resonance Imaging Nanoprobe across the Blood-Brain Barrier

Omid Veiseh et al.Jul 29, 2009
Abstract Nanoparticle-based platforms have drawn considerable attention for their potential effect on oncology and other biomedical fields. However, their in vivo application is challenged by insufficient accumulation and retention within tumors due to limited specificity to the target, and an inability to traverse biological barriers. Here, we present a nanoprobe that shows an ability to cross the blood-brain barrier and specifically target brain tumors in a genetically engineered mouse model, as established through in vivo magnetic resonance and biophotonic imaging, and histologic and biodistribution analyses. The nanoprobe is comprised of an iron oxide nanoparticle coated with biocompatible polyethylene glycol–grafted chitosan copolymer, to which a tumor-targeting agent, chlorotoxin, and a near-IR fluorophore are conjugated. The nanoprobe shows an innocuous toxicity profile and sustained retention in tumors. With the versatile affinity of the targeting ligand and the flexible conjugation chemistry for alternative diagnostic and therapeutic agents, this nanoparticle platform can be potentially used for the diagnosis and treatment of a variety of tumor types. [Cancer Res 2009;69(15):6200–7]
0
Citation352
0
Save
Load More