ZZ
Zeyang Zhang
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
0
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs?

Zeyang Zhang et al.Aug 24, 2024
+3
Z
X
Z
In an era marked by the increasing adoption of Large Language Models (LLMs) for various tasks, there is a growing focus on exploring LLMs' capabilities in handling web data, particularly graph data. Dynamic graphs, which capture temporal network evolution patterns, are ubiquitous in real-world web data. Evaluating LLMs' competence in understanding spatial-temporal information on dynamic graphs is essential for their adoption in web applications, which remains unexplored in the literature. In this paper, we bridge the gap via proposing to evaluate LLMs' spatial-temporal understanding abilities on dynamic graphs, to the best of our knowledge, for the first time. Specifically, we propose the LLM4DyG benchmark, which includes nine specially designed tasks considering the capability evaluation of LLMs from both temporal and spatial dimensions. Then, we conduct extensive experiments to analyze the impacts of different data generators, data statistics, prompting techniques, and LLMs on the model performance. Finally, we propose Disentangled Spatial-Temporal Thoughts (DST2) for LLMs on dynamic graphs to enhance LLMs' spatial-temporal understanding abilities. Our main observations are: 1) LLMs have preliminary spatial-temporal understanding abilities on dynamic graphs, 2) Dynamic graph tasks show increasing difficulties for LLMs as the graph size and density increase, while not sensitive to the time span and data generation mechanism, 3) the proposed DST2 prompting method can help to improve LLMs' spatial-temporal understanding abilities on dynamic graphs for most tasks. The data and codes are publicly available at Github.
0

Decoding cell identity with multi-scale explainable deep learning

Jun Zhu et al.Feb 8, 2024
+11
W
F
J
Abstract Cells are the fundamental structural and functional units of life. Studying the definition and composition of different cell types can help us understand the complex mechanisms underlying biological diversity and functionality. The increasing volume of extensive single-cell omics data makes it possible to provide detailed characterisations of cell types. Recently, there has been a rise in deep learning-based approaches that generate cell type labels solely through mapping query data to reference data. However, these approaches lack multi-scale descriptions and interpretations of identified cell types. Here, we propose Cell Decoder, a biological prior knowledge informed model to achieve multi-scale representation of cells. We implemented automated machine learning and post-hoc analysis techniques to decode cell identity. We have shown that Cell Decoder compares favourably to existing methods, offering multi-view interpretability for decoding cell identity and data integration. Furthermore, we have showcased its applicability in uncovering novel cell types and states in both human bone and mouse embryonic contexts, thereby revealing the multi-scale heterogeneity inherent in cell identities.