JE
Jared Ellenbogen
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1
h-index:
0
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping the soil microbiome functions shaping wetland methane emissions

Angela Oliverio et al.Feb 7, 2024
+21
J
A
A
Accounting for only 8% of Earth's land coverage, freshwater wetlands remain the foremost contributor to global methane emissions. Yet the microorganisms and processes underlying methane emissions from wetland soils remain poorly understood. Over a five-year period, we surveyed the microbial membership and in situ methane measurements from over 700 samples in one of the most prolific methane-emitting wetlands in the United States. We constructed a catalog of 2,502 metagenome-assembled genomes (MAGs), with nearly half of the 72 bacterial and archaeal phyla sampled containing novel lineages. Integration of these data with 133 soil metatranscriptomes provided a genome-resolved view of the biogeochemical specialization and versatility expressed in wetland soils. Centimeter-scale depth differences best explained patterns of microbial community structure and transcribed functionalities, even more so than land coverage or temporal information. Moreover, while extended flooding restructured soil redox, this perturbation failed to reconfigure the transcriptional profiles of methane cycling microorganisms, contrasting with theoretical expected responses to hydrological perturbations. Co-expression analyses coupled to depth resolved methane measurements exposed the metabolisms and trophic structures most predictive of methane hotspots. This compendium of biogeochemically-classified genomes and their spatiotemporal transcriptional patterns begins to untangle the microbial carbon, energy and nutrient processing contributing to soil methane production.
0
Paper
Citation1
0
Save
0

Metabolic interactions underpinning high methane fluxes across terrestrial freshwater wetlands

Emily Bechtold et al.Apr 15, 2024
+12
J
J
E
Current estimates of wetland contributions to the global methane budget carry high uncertainty, particularly in accurately predicting emissions from high methane-emitting wetlands. Microorganisms mediate methane cycling, yet knowledge of their conservation across wetlands remains scarce. To address this, we integrated 1,118 16S rRNA amplicon datasets (116 new), 305 metagenomes (20 new) that yielded 4,745 medium and high-quality metagenome assembled genomes (MAGs; 617 new), 133 metatranscriptomes, and annual methane flux data across 9 wetlands to create the Multi-Omics for Understanding Climate Change (MUCC) v2.0.0 database. This new resource was leveraged to link microbiome compositional profiles to encoded functions and emissions, with specific focus on methane-cycling populations and the microbial carbon decomposition networks that fuel them. We identified eight methane-cycling genera that were conserved across wetlands, and deciphered wetland specific metabolic interactions across marshes, revealing low methanogen-methanotroph connectivity in high-emitting wetlands. Methanoregula emerged as a hub methanogen across networks and was a strong predictor of methane flux, demonstrating the potential broad relevance of methylotrophic methanogenesis in these ecosystems. Collectively, our findings illuminate trends between microbial decomposition networks and methane flux and provide an extensive publicly available database to advance future wetland research.
1

Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost

Jared Ellenbogen et al.Jul 10, 2023
+14
D
B
J
Abstract While wetlands are major sources of biogenic methane (CH 4 ), our understanding of resident microbial metabolisms is incomplete, which compromises prediction of CH 4 emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire, in arctic Sweden. In quadrupling the genomic representation of the site’s methanogens and examining their encoded metabolisms, we revealed that nearly 20% (72) of the metagenome-assembled genomes (MAGs) encoded potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; for Methanosarcinales and Methanobacteriales MAGs, these data indicated use of methylated oxygen compounds (e.g., methanol), while for Methanomassiliicoccales , they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy, and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activity. Methanogenesis across increasing permafrost thaw is thus revised from sole dominance of hydrogenotrophic production, and the appearance of acetoclastic at full thaw, to consider co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats.