KL
Katherine Louie
Author with expertise in Advances in Metabolomics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
1,470
h-index:
22
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly

Kateryna Zhalnina et al.Mar 15, 2018
+10
Z
K
K
Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.
0
Citation1,444
0
Save
67

GNPS Dashboard: Collaborative Analysis of Mass Spectrometry Data in the Web Browser

Daniel Petras et al.Apr 6, 2021
+33
D
V
D
Abstract Access to web-based platforms has enabled scientists to perform research remotely. A critical aspect of mass spectrometry data analysis is the inspection, analysis, and visualization of the raw data to validate data quality and confirm statistical observations. We developed the GNPS Dashboard, a web-based data visualization tool, to facilitate synchronous collaborative inspection, visualization, and analysis of private and public mass spectrometry data remotely.
20

Drought shifts sorghum root metabolite and microbiome profiles and enriches the stress response factor pipecolic acid

Daniel Caddell et al.Nov 9, 2020
+6
B
K
D
ABSTRACT Interactions between plants and their root-associated microbiome are important for determining host fitness during periods of stress. During drought, monoderm bacteria are more abundant in sorghum roots than in those of watered controls. Additionally, a reversion from monoderm to diderm dominance occurs in drought-stressed roots one week after rewatering. However, the mechanisms driving this rapid microbiome composition shift is currently unknown. To understand if changes in host metabolism are correlated with this shift, we employed 16S amplicon sequencing and metabolomics of root, rhizosphere, and soil at the peak of a preflowering drought and 24 hours after rewatering. The microbiomes of droughted roots, rhizospheres, and soils differed from watered controls, and shifts in bacterial composition were observed in root and rhizosphere 24 hours after rewatering, highlighting the rapid response of microbes to the cessation of drought. Next, we performed metabolomic profiling to identify putative drivers of this process. During drought, we observed a high abundance of abiotic stress response factors, including antioxidants, osmolytes, amino acids, and plant hormones. After rewatering, large shifts in metabolite abundances were observed in rhizosphere, whereas shifts in root and soil were subtle. In addition, pipecolic acid, a well-characterized systemic acquired resistance signalling compound, was enriched in roots and rhizosphere during drought. We found that exogenous application of pipecolic acid suppresses root growth via a systemic acquired resistance-independent mechanism. Collectively, these data provide a comprehensive characterization of metabolite shifts across three compartments during drought, and elucidate a potential role of pipecolic acid in the sorghum drought response. IMPORTANCE Plant-associated microbial communities shift in composition and contribute to host fitness during drought. In particular, Actinobacteria are enriched in plant roots and rhizosphere during drought. However, the mechanisms plants use to drive this shift are poorly understood. Here we apply a combination of bacterial and metabolite profiling in root, rhizosphere, and soil during drought and drought-recovery to investigate potential contributions of host metabolism towards shifts in bacterial composition. Our results demonstrate that drought alters metabolic profiles and that the response to rewatering differs between compartments; we identify drought-responsive metabolites that are highly correlated with Actinobacteria abundance. Furthermore, our study reports for the first time that pipecolic acid is a drought-enriched metabolite in sorghum roots. We demonstrate that exogenous application of pipecolic acid is able to provoke one of the classic drought responses in roots, root growth suppression, and that this activity functions independently from the systemic acquired resistance pathway.
20
Citation8
0
Save
5

Substrate availability and not thermal-acclimation controls microbial temperature sensitivity response to long term warming

Luiz Domeignoz‐Horta et al.Sep 5, 2022
+10
H
G
L
Abstract Microbes are responsible for cycling carbon (C) through soils, and the predictions of how soil C stocks change with warming are highly sensitive to the assumptions made about the mechanisms controlling the microbial physiology response to climate warming. Two mechanisms, microbial thermal-acclimation and changes in the quantity and quality of substrates available for microbial metabolism have been suggested to explain the long-term warming impact on microbial physiology. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long-term warming, we sampled soils from 13- and 28-year old soil warming experiments in different seasons. We performed short-term laboratory incubations across a range of temperatures to measure the relationship between temperature sensitivity of physiology (growth, respiration, carbon use efficiency and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation in microbial processes important for C cycling, but only when warming had exacerbated the seasonally-induced, already small soil organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon enhanced the extracellular enzymatic pool and its temperature sensitivity. We suggest that fresh litter input into the system seasonally cancels apparent thermal acclimation of C-cycling processes. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long-term warming impact in soils.
5
Citation3
0
Save
20

Secondary metabolism drives ecological breadth in the Xylariaceae

Mario Franco et al.Jun 2, 2021
+36
É
A
M
ABSTRACT Global, large-scale surveys of phylogenetically diverse plant and lichen hosts have revealed an extremely high richness of endophytes in the Xylariales, one of the largest clades of filamentous fungi and a significant source of novel secondary metabolites (SMs). Endophytes may produce host protective antimicrobial or insecticidal SMs, as well as compounds that facilitate symbiotic establishment through suppression or degradation of host immune response, but the ecological roles of most SMs are unknown. Here we characterized metabolic gene clusters in 96 genomes of endophytes and closely related saprotrophs and pathogens in two clades of Xylariales (Xylariaceae s.l. and Hypoxylaceae). Hundreds of genes appear horizontally transferred to xylarialean fungi from distantly related fungi and bacteria, including numerous genes in secondary metabolite gene clusters (SMGCs). Although all xylarialean genomes contain hyperabundant SMGCs, we show that increased gene duplications, horizontal gene transfers (HGTs), and SMGC content in Xylariaceae s.l. taxa are linked to greater phylogenetic host breadth, larger biogeographic distributions, and increased capacity for lignocellulose decomposition compared to Hypoxylaceae taxa. Overall, our results suggest that xylarialean endophytes capable of dual ecological modes (symbiotic and saprotrophic) experience greater selection to diversify SMGCs to both increase competitiveness within microbial communities and facilitate diverse symbiotic interactions.
20
Citation2
0
Save
0

Mapping the soil microbiome functions shaping wetland methane emissions

Angela Oliverio et al.Feb 7, 2024
+21
J
A
A
Accounting for only 8% of Earth's land coverage, freshwater wetlands remain the foremost contributor to global methane emissions. Yet the microorganisms and processes underlying methane emissions from wetland soils remain poorly understood. Over a five-year period, we surveyed the microbial membership and in situ methane measurements from over 700 samples in one of the most prolific methane-emitting wetlands in the United States. We constructed a catalog of 2,502 metagenome-assembled genomes (MAGs), with nearly half of the 72 bacterial and archaeal phyla sampled containing novel lineages. Integration of these data with 133 soil metatranscriptomes provided a genome-resolved view of the biogeochemical specialization and versatility expressed in wetland soils. Centimeter-scale depth differences best explained patterns of microbial community structure and transcribed functionalities, even more so than land coverage or temporal information. Moreover, while extended flooding restructured soil redox, this perturbation failed to reconfigure the transcriptional profiles of methane cycling microorganisms, contrasting with theoretical expected responses to hydrological perturbations. Co-expression analyses coupled to depth resolved methane measurements exposed the metabolisms and trophic structures most predictive of methane hotspots. This compendium of biogeochemically-classified genomes and their spatiotemporal transcriptional patterns begins to untangle the microbial carbon, energy and nutrient processing contributing to soil methane production.
0
Paper
Citation1
0
Save
2

Characterization and visualization of global metabolomic responses ofBrachypodium distachyonto environmental changes

Elizabeth Mahood et al.May 11, 2022
+11
K
A
E
Abstract Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from tandem liquid chromatography mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how different metabolite classes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots and other organs of Brachypodium distachyon , a model Poaceae species, under 17 different organ-condition combinations, including copper deficiency, heat stress, low phosphate and arbuscular mycorrhizal symbiosis (AMS). We used a combination of information theory-based metrics and machine learning-based identification of metabolite structural classes to assess metabolomic changes. Both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We also found that one week of copper deficiency shielded the root metabolome, but not the leaf metabolome, from perturbation due to heat stress. Using a recently published deep learning based method for metabolite class predictions, we analyzed the responsiveness of each metabolite class to environmental change, which revealed significant perturbations of various lipid classes and phenylpropanoids such as cinnamic acids and flavonoids. Co-accumulation analysis further identified condition-specific metabolic biomarkers. Finally, to make these results publicly accessible, we developed a novel visualization platform on the Bioanalytical Resource website, where significantly perturbed metabolic classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and plant stress adaptation.
0

Powdery mildew infection induces a non-canonical route to storage lipid formation at the expense of host thylakoid lipids to fuel its spore production

Johan Jaenisch et al.Dec 16, 2023
+4
J
H
J
ABSTRACT Powdery mildews are obligate biotrophic fungi that manipulate plant metabolism to supply lipids, particularly during fungal asexual reproduction when fungal lipid demand is extensive. The mechanism for host response to fungal lipid demand has not been resolved. We found storage lipids, triacylglycerols (TAGs), increase by 3.5-fold in powdery mildew-infected tissue. In addition, lipid bodies, not observable in uninfected mature leaves, are present in both cytosol and chloroplasts at the infection site. This is concurrent with decreased thylakoid membrane lipids and thylakoid disassembly. Together, these findings indicate that the powdery mildew induces localized thylakoid membrane degradation to promote storage lipid formation. Genetic analyses show the canonical ER pathway for TAG synthesis does not support powdery mildew spore production. Instead, Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 3 (DGAT3), shown to be chloroplast-localized and to be largely responsible for powdery mildew-induced chloroplast TAGs, promotes fungal asexual reproduction. Powdery mildew-induced leaf TAGs are enriched in thylakoid associated fatty acids, which are also present in the produced spores. This research provides new insights on obligate biotrophy and plant lipid metabolism plasticity and function. Furthermore, by understanding how photosynthetically active leaves can be converted into TAG producers, more sustainable and environmentally benign plant oil production could be facilitated.
0

Expression of dehydroshikimate dehydratase in poplar induces transcriptional and metabolic changes in the phenylpropanoid pathway

Emine Turumtay et al.May 29, 2024
+16
Y
H
E
Abstract Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
1

Cynipid wasps systematically reprogram host metabolism and restructure cell walls in developing galls

Kasey Markel et al.May 23, 2023
+10
B
V
K
Abstract Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls in which insect larva can develop while being sheltered within and feeding on the plant. In particular, Cynipid (Hymenoptera: Cynipidae) wasps have evolved to form some of the most morphologically complex galls known and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is the deposition of the cell wall to dictate the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how Cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing new insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form novel structures and organs.
Load More