SG
Shanisha Gordon-Mitchell
Author with expertise in Acute Myeloid Leukemia
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
200
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Broad de-regulated U2AF1 splicing is prognostic and augments leukemic transformation via protein arginine methyltransferase activation

Meenakshi Venkatasubramanian et al.Feb 8, 2024
ABSTRACT The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1 -mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1 -like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1 -like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1 -like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations. Statement of significance Using a new in silico strategy we reveal counteracting determinants of patient survival in Acute Myeloid Leukemia that co-opt well-defined mutation-dependent splicing programs. Broad poor-prognosis splicing and leukemia stem cell survival could be rescued through pharmacological inhibition (PRMT5) or target deletion (IRAK4), opening the door for new precision therapies. Competing Interests Conflict-of-interest disclosure: DTS. serves on the scientific advisory board at Kurome Therapeutics; is a consultant for and/or received funding from Kurome Therapeutics, Captor Therapeutics, Treeline Biosciences, and Tolero Therapeutics; and has equity in Kurome Therapeutics. AV has received research funding from GlaxoSmithKline, BMS, Jannsen, Incyte, MedPacto, Celgene, Novartis, Curis, Prelude and Eli Lilly and Company, has received compensation as a scientific advisor to Novartis, Stelexis Therapeutics, Acceleron Pharma, and Celgene, and has equity ownership in Throws Exception and Stelexis Therapeutics.
1

Activation of targetable inflammatory immune signaling is seen in Myelodysplastic Syndromes with SF3B1 mutations

Gaurav Choudhary et al.Mar 9, 2022
Abstract Background Mutations in the SF3B1 splicing factor are commonly seen in Myelodysplastic syndromes (MDS) and Acute Myeloid Leukemia (AML), yet the specific oncogenic pathways activated by missplicing have not been fully elucidated. Inflammatory immune pathways have been shown to play roles in pathogenesis of MDS, though the exact mechanisms of their activation in splicing mutant cases are not well understood. Methods RNA-seq data from SF3B1 mutant samples was analyzed and functional roles of IRAK4 isoforms were determined. Efficacy of IRAK4 inhibition was evaluated in pre-clinical models of MDS/AML Results RNA-seq splicing analysis of innate immune mediators in SF3B1 mutant MDS samples revealed retention of full-length exon 6 of interleukin-1 receptor-associated kinase 4 (IRAK4), a critical downstream mediator that links the Myddosome to inflammatory NF-kB activation. Exon 6 retention leads to a longer isoform, encoding a protein (IRAK4-Long) that contains the entire death domain and kinase domain, leading to maximal activation of NF-kB. Cells with wild-type SF3B1 contain smaller IRAK4 isoforms that are targeted for proteosomal degradation. Expression of IRAK4-Long in SF3B1 mutant cells induces TRAF6 activation leading to K63-linked ubiquitination of CDK2, associated with a block in hematopoietic differentiation. Inhibition of IRAK4 with CA-4948, leads to reduction in NF-kB activation, inflammatory cytokine production, enhanced myeloid differentiation in vitro and reduced leukemic growth in xenograft models. Conclusions SF3B1 mutation leads to expression of a therapeutically targetable, longer, oncogenic IRAK4 isoform in AML/MDS models.