ET
Emily Troemel
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(71% Open Access)
Cited by:
2,578
h-index:
37
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans

Emily Troemel et al.Jan 1, 2006
The PMK-1 p38 mitogen-activated protein kinase pathway and the DAF-2–DAF-16 insulin signaling pathway control Caenorhabditis elegans intestinal innate immunity. pmk-1 loss-of-function mutants have enhanced sensitivity to pathogens, while daf-2 loss-of-function mutants have enhanced resistance to pathogens that requires upregulation of the DAF-16 transcription factor. We used genetic analysis to show that the pathogen resistance of daf-2 mutants also requires PMK-1. However, genome-wide microarray analysis indicated that there was essentially no overlap between genes positively regulated by PMK-1 and DAF-16, suggesting that they form parallel pathways to promote immunity. We found that PMK-1 controls expression of candidate secreted antimicrobials, including C-type lectins, ShK toxins, and CUB-like genes. Microarray analysis demonstrated that 25% of PMK-1 positively regulated genes are induced by Pseudomonas aeruginosa infection. Using quantitative PCR, we showed that PMK-1 regulates both basal and infection-induced expression of pathogen response genes, while DAF-16 does not. Finally, we used genetic analysis to show that PMK-1 contributes to the enhanced longevity of daf-2 mutants. We propose that the PMK-1 pathway is a specific, indispensable immunity pathway that mediates expression of secreted immune response genes, while the DAF-2–DAF-16 pathway appears to regulate immunity as part of a more general stress response. The contribution of the PMK-1 pathway to the enhanced lifespan of daf-2 mutants suggests that innate immunity is an important determinant of longevity.
0
Citation619
0
Save
0

Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus

Javier Irazoqui et al.Jul 1, 2010
The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with potentially conserved roles also in mammals.
0
Citation329
0
Save
0

Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth

Christina Cuomo et al.Jul 18, 2012
Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida . We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma , which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites.
0
Citation277
0
Save
0

Ubiquitin-Mediated Response to Microsporidia and Virus Infection in C. elegans

Malina Bakowski et al.Jun 19, 2014
Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.
0
Citation218
0
Save
3

A cullin-RING ubiquitin ligase promotes thermotolerance as part of the Intracellular Pathogen Response in C. elegans

Johan Panek et al.Mar 23, 2019
Abstract Intracellular pathogen infection leads to proteotoxic stress in host organisms. Previously we described a physiological program in the nematode C. elegans called the Intracellular Pathogen Response (IPR), which promotes resistance to proteotoxic stress and appears to be distinct from canonical proteostasis pathways. The IPR is controlled by PALS-22 and PALS-25, proteins of unknown biochemical function, which regulate expression of genes induced by natural intracellular pathogens. We previously showed that PALS-22 and PALS-25 regulate the mRNA expression of the predicted ubiquitin ligase component cullin cul-6 , which promotes thermotolerance in pals-22 mutants. However, it was unclear whether CUL-6 acted alone, or together with other ubiquitin ligase components. Here we use co-immunoprecipitation studies paired with genetic analysis to define the cullin-RING ligase components that act together with CUL-6 to promote thermotolerance. First, we identify a previously uncharacterized RING domain protein in the TRIM family we named RCS-1, which acts as a core component with CUL-6 to promote thermotolerance. Next, we show that the Skp-related proteins SKR-3, SKR-4 and SKR-5 act redundantly to promote thermotolerance with CUL-6. Finally, we screened F-box proteins that co-immunoprecipitate with CUL-6 and find that FBXA-158 promotes thermotolerance. In summary, we have defined the three core components and an F-box adaptor of a cullin-RING ligase complex that promotes thermotolerance as part of the IPR in C. elegans , which adds to our understanding of how organisms cope with proteotoxic stress. Significance Statement Intracellular pathogen infection in the nematode Caenorhabditis elegans induces a robust transcriptional response as the host copes with infection. This response program includes several ubiquitin ligase components that are predicted to function in protein quality control. In this study, we show that these infection-induced ubiquitin ligase components form a protein complex that promotes increased tolerance of acute heat stress, an indicator of improved protein homeostasis capacity. These findings show that maintaining protein homeostasis may be a critical component of a multifaceted approach allowing the host to deal with stress caused by intracellular infection.
3
Citation4
0
Save
0

In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans

Aaron Reinke et al.Jul 27, 2016
Abstract Multicellular organisms are composed of tissues that have distinct functions requiring specialized proteomes. To define the proteome of a live animal with tissue and subcellular resolution, we adapted a localized proteomics technology for use in the multicellular model organism Caenorhabditis elegans . This approach couples tissue- and location-specific expression of the enzyme ascorbate peroxidase (APX), which facilitates proximity-based protein labeling in vivo, and quantitative proteomics to identify tissue- and subcellular-restricted proteomes. We identified and localized over 3000 proteins from strains of C. elegans expressing APX in either the nucleus or cytoplasm of the intestine, epidermis, body wall muscle, or pharyngeal muscle. We also identified several hundred proteins that were specifically localized to one of the four tissues analyzed or specifically localized to the cytoplasm or the nucleus. This approach resulted in the identification of both previously characterized and unknown nuclear and cytoplasmic proteins. Further, we confirmed the tissue- and subcellular-specific localization of a subset of identified proteins using GFP-tagging and fluorescence microscopy, validating our in vivo proximity-based proteomics technique. Together, these results demonstrate a new approach that enables the tissue- and subcellular-specific identification and quantification of proteins within a live animal.
0
Citation1
0
Save
0

A large collection of novel nematode-infecting microsporidia and their diverse interactions withC. elegansand other related nematodes

Gaotian Zhang et al.Sep 12, 2016
ABSTRACT Microsporidia are fungi-related intracellular pathogens that may infect virtually all animals, but are poorly understood. The nematode Caenorhabditis elegans has recently become a model host for studying microsporidia through the identification of its natural microsporidian pathogen Nematocida parisii. However, it was unclear how widespread and diverse microsporidia infections are in C. elegans or other related nematodes in the wild. Here we describe the isolation and culture of 47 nematodes with microsporidian infections. N. parisii is found to be the most common microsporidia infecting C. elegans in the wild. In addition, we further describe and name six new species in the Nematocida genus. Our sampling and phylogenetic analysis further identify two subclades that are genetically distinct from Nematocida , and we name them Enteropsectra and Pancytospora. Interestingly, unlike Nematocida, these two genera belong to the main clade of microsporidia that includes human pathogens. All of these microsporidia are horizontally transmitted and most specifically infect intestinal cells, except Pancytospora epiphaga that replicates mostly in the epidermis of its Caenorhabditis host. At the subcellular level in the infected host cell, spores of the novel genus Enteropsectra show a characteristic apical distribution and exit via budding off of the plasma membrane, instead of exiting via exocytosis as spores of Nematocida. Host specificity is broad for some microsporidia, narrow for others: indeed, some microsporidia can infect Oscheius tipulae but not its sister species, and conversely. We also show that N. ausubeli fails to strongly induce in C. elegans the transcription of genes that are induced by other Nematocida species, suggesting it has evolved mechanisms to prevent induction of this host response. Altogether, these newly isolated species illustrate the diversity and ubiquity of microsporidian infections in nematodes, and provide a rich resource to investigate host-parasite coevolution in tractable nematode hosts. Author Summary Microsporidia are microbial parasites that live inside their host cells and can cause disease in humans and many other animals. The small nematode worm Caenorhabditis elegans has recently become a convenient model host for studying microsporidian infections. In this work, we sample Caenorhabditis and other small nematodes and 47 associated microsporidian strains from the wild. We characterize the parasites for their position in the evolutionary tree of microsporidia and for their lifecycle and morphology. We find several new species and genera, especially some that are distantly related to the previously known Nematocida parisii and instead closely related to human pathogens. We find that some of these species have a narrow host range. We studied two species in detail using electron microscopy and uncover a new likely mode of exit from the host cell, by budding off the host cell plasma membrane rather than by fusion of a vesicle to the plasma membrane as in N. parisii. We also find a new species that infects the epidermis and muscles of Caenorhabditis rather than the host intestinal cells and is closely related to human pathogens. Finally, we find that one Nematocida species fails to elicit the same host response that other Nematocida species do. These new microsporidia open up many windows into microsporidia biology and opportunities to investigate host-parasite coevolution in the C. elegans system.
0
Citation1
0
Save
1

RNA fluorescence in situ hybridization (FISH) to visualize microbial colonization and infection in the Caenorhabditis elegans intestines

Dalaena Rivera et al.Feb 28, 2022
ABSTRACT The intestines of wild Caenorhabditis nematodes are inhabited by a variety of microorganisms, including gut microbiome bacteria and pathogens, such as microsporidia and viruses. Because of the similarities between Caenorhabditis elegans and mammalian intestinal cells, as well as the power of the C. elegans system, this host has emerged as a model system to study host intestine-microbe interactions in vivo. While it is possible to observe some aspects of these interactions with bright-field microscopy, it is difficult to accurately classify microbes and characterize the extent of colonization or infection without more precise tools. This protocol introduces RNA fluorescence in situ hybridization (FISH) as a tool used for the identification, visualization, and quantification of the microbes within the intestines of C. elegans . FISH probes that label the highly abundant small subunit ribosomal RNA can produce a bright signal for bacteria and microsporidian cells, and similar probes can be used to label viral RNA. FISH probes can be ordered from a commercial source as single-stranded DNA end-labeled with fluorophores. One limitation is that FISH may not provide robust signal against low copy targets, although signal can be boosted by using multiple probes (so-called ‘single-molecule FISH’). FISH staining involves collecting colonized or infected animals, washing to eliminate external contamination, followed by fixation in either paraformaldehyde or acetone. After fixation, FISH probes are incubated with samples to allow for the hybridization of probes to the desired target. To remove excess background, the animals are washed again, and then examined on microscope slides or using automated approaches. Overall, this protocol enables detection, identification, and quantification of the microbes that inhabit the C. elegans intestine, including microbes for which there are no genetic tools available. SUMMARY Gut microbiome bacteria and intestinal intracellular pathogens, like the Orsay virus and microsporidia, are often found associated with wild Caenorhabditis nematodes. This protocol presents RNA FISH as a method for the detection, quantification, and identification of colonizing or infectious microbes within the context of intact C. elegans nematodes.
1
Citation1
0
Save
Load More