The current model of the mammalian circadian oscillator is predominantly based on data from genetics and biochemistry experiments, while the cell biology of circadian clocks is still in its infancy. Here, we describe a new strategy for the efficient generation of knock-in reporter cell lines using CRISPR technology that is particularly useful for lowly or transiently expressed genes, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins, which allowed to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>6 times) compared to PER2 questioning the current model of the circadian oscillator. Our knock-in strategy will allow the generation of additional single, double or triple knock-in cells for circadian clock proteins, which should greatly advance our understanding about the cell biology of circadian clocks.