KM
Keita Miyoshi
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
2,122
h-index:
22
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome

Kuniaki Saito et al.Aug 1, 2006
In Drosophila , Piwi (P-element-induced wimpy testis), which encodes a protein of the Argonaute family, is essential for germ stem cell self-renewal. Piwi has recently been shown to be a nuclear protein involved in gene silencing of retrotransposons and controlling their mobilization in the male germline. However, little is known about the molecular mechanisms of Piwi-dependent gene silencing. Here we show that endogenous Piwi immunopurified from ovary specifically associates with small RNAs of 25–29 nucleotides in length. Piwi-associated small RNAs were identified by cloning and sequencing as repeat-associated small interfering RNAs (rasiRNAs) derived from repetitive regions, such as retrotransposon and heterochromatic regions, in the Drosophila genome. Northern blot analyses revealed that in vivo Piwi does not associate with microRNAs (miRNAs) and that guide siRNA was not loaded onto Piwi when siRNA duplex was added to ovary lysate. In vitro, recombinant Piwi exhibits target RNA cleavage activity. These data together imply that Piwi functions in nuclear RNA silencing as Slicer by associating specifically with rasiRNAs originating from repetitive targets.
0
Citation612
0
Save
0

Slicer function of Drosophila Argonautes and its involvement in RISC formation

Keita Miyoshi et al.Nov 14, 2005
Argonaute proteins play important yet distinct roles in RNA silencing. Human Argonaute2 (hAgo2) was shown to be responsible for target RNA cleavage (“Slicer”) activity in RNA interference (RNAi), whereas other Argonaute subfamily members do not exhibit the Slicer activity in humans. In Drosophila , AGO2 was shown to possess the Slicer activity. Here we show that AGO1, another member of the Drosophila Argonaute subfamily, immunopurified from Schneider2 (S2) cells associates with microRNA (miRNA) and cleaves target RNA completely complementary to the miRNA. Slicer activity is reconstituted with recombinant full-length AGO1. Thus, in Drosophila , unlike in humans, both AGO1 and AGO2 have Slicer functions. Further, reconstitution of Slicer activity with recombinant PIWI domains of AGO1 and AGO2 demonstrates that other regions in the Argonautes are not strictly necessary for small interfering RNA (siRNA)-binding and cleavage activities. It has been shown that in circumstances with AGO2-lacking, the siRNA duplex is not unwound and consequently an RNA-induced silencing complex (RISC) is not formed. We show that upon addition of an siRNA duplex in S2 lysate, the passenger strand is cleaved in an AGO2-dependent manner, and nuclease-resistant modification of the passenger strand impairs RISC formation. These findings give rise to a new model in which AGO2 is directly involved in RISC formation as “Slicer” of the passenger strand of the siRNA duplex.
0
Citation386
0
Save
1

Mettl1-dependent m7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster

S Kaneko et al.Sep 5, 2023
Abstract N 7 -methylguanosine (m 7 G) in the variable loop region of tRNA is catalyzed by METTL1/WDR4 heterodimer and stabilizes target tRNA. Here, we reveal essential functions of Mettl1 in Drosophila fertility. Knockout of Mettl1 (Mettl1-KO) lost the elongated spermatids and mature sperm, which was fully rescued by a Mettl1-transgene expression, but not a catalytic-dead Mettl1 transgene. This demonstrates that Mettl1-dependent m 7 G is required for spermatogenesis. Mettl1-KO resulted in a loss of m 7 G modification on a subset of tRNAs and a decreased level of tRNA expression. Strikingly, overexpression of the translational elongation factor, EF1α1, which can compete with the rapid tRNA decay (RTD) pathway in S. cerevisiae , significantly counteracted the sterility of Mettl1-KO males, supporting a critical role of m 7 G modification of tRNAs in spermatogenesis. Ribosome profiling showed that Mettl1-KO led to the ribosome stalling at codons decoded by tRNAs that were reduced in expression. Mettl1-KO also significantly reduced the translation efficiency of genes involved in elongated spermatid formation and sperm stability. These findings reveal a developmental role for m 7 G tRNA modifications and indicate that m 7 G modification-dependent tRNA stability differs among tissues.